The Validity of the Push Band 2.0 on the Reactive Strength Index Assessment in Drop Jump
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Experimental Approach to the Problem
2.2. Subjects
2.3. Procedures
2.4. Instruments
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozen, G.; Atar, O.; Koc, H. The Effects of A 6-Week Plyometric Training Programme on Sand Versus Wooden Parquet Surfaces on the Physical Performance Parameters of Well-Trained Young Basketball Players. Montenegrin J. Sport 2020, 9, 27–32. [Google Scholar] [CrossRef]
- Rimmer, E.; Sleivert, G. Effects of a plyometrics intervention program on sprint performance. J. Strength Cond. Res. 2000, 14, 295–301. [Google Scholar]
- Vaczi, M.; Tollar, J.; Meszler, B.; Juhasz, I.; Karsai, I. Short-Term High Intensity Plyometric Training Program Improves Strength, Power and Agility in Male Soccer Players. J. Hum. Kinet. 2013, 36, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Kossow, A.J.; Ebben, W.P. Kinetic Analysis of Horizontal Plyometric Exercise Intensity. J. Strength Cond. Res. 2018, 32, 1222–1229. [Google Scholar] [CrossRef]
- Jarvis, M.M.; Graham-Smith, P.; Comfort, P. A Methodological Approach to Quantifying Plyometric Intensity. J. Strength Cond. Res. 2016, 30, 2522–2532. [Google Scholar] [CrossRef]
- GutiÉRrez-DÁVila, M.; Giles Girela, F.J.; GonzÁLez Ropero, C.; Gallardo RomÁN, D.J.; Rojas Ruiz, F.J. Efecto de la intensidad del contramovimiento sobre el rendimiento del salto vertical./Effect on the Intensity of Countermovement on Vertical Jump Performance. Apunt. Educ. Física E Esports 2015, 119, 87–96. [Google Scholar]
- Young, W.B.; Wilson, G.J.; Byrne, C. A comparison of drop jump training methods: Effects on leg extensor strength qualities and jumping performance. Int. J. Sports Med. 1999, 20, 295–303. [Google Scholar] [CrossRef]
- Peng, H.T.; Khuat, C.T.; Kernozek, T.W.; Wallace, B.J.; Lo, S.L.; Song, C.Y. Optimum Drop Jump Height in Division III Athletes: Under 75% of Vertical Jump Height. Int. J. Sports Med. 2017, 38, 842–846. [Google Scholar] [CrossRef]
- Peng, H.T.; Song, C.Y.; Wallace, B.J.; Kernozek, T.W.; Wang, M.H.; Wang, Y.H. Effects of Relative Drop Heights of Drop Jump Biomechanics in Male Volleyball Players. Int. J. Sports Med. 2019, 40, 863–870. [Google Scholar] [CrossRef]
- Struzik, A.; Juras, G.; Pietraszewski, B.; Rokita, A. Effect of Drop Jump Technique on the Reactive Strength Index. J. Hum. Kinet. 2016, 52, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Walsh, M.; Arampatzis, A.; Schade, F.; Bruggemann, G.P. The effect of drop jump starting height and contact time on power, work performed, and moment of force. J. Strength Cond. Res. 2004, 18, 561–566. [Google Scholar] [PubMed]
- Ingle, L.; Sleap, M.; Tolfrey, K. The effect of a complex training and detraining programme on selected strength and power variables in early pubertal boys. J. Sports Sci. 2006, 24, 987–997. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, E.P.; Comyns, T.M. The Use of Contact Time and the Reactive Strength Index to Optimize Fast Stretch-Shortening Cycle Training. Strength Cond. J. 2008, 30, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Taube, W.; Leukel, C.; Gollhofer, A. How Neurons Make Us Jump: The Neural Control of Stretch-Shortening Cycle Movements. Exerc. Sport Sci. Rev. 2012, 40, 106–115. [Google Scholar] [CrossRef]
- Byrne, D.J.; Browne, D.T.; Byrne, P.J.; Richardson, N. Interday Reliability of the Reactive Strength Index and Optimal Drop Height. J. Strength Cond. Res. 2017, 31, 721–726. [Google Scholar] [CrossRef]
- Ebben, W.P.; Petushek, E.J. Using the reactive strength index modified to evaluate plyometric performance. J. Strength Cond. Res. 2010, 24, 1983–1987. [Google Scholar] [CrossRef]
- Flanagan, E.P.; Ebben, W.P.; Jensen, R.L. Reliability of the Reactive Strength Index and Time to Stabilization during Depth Jumps. J. Strength Cond. Res. 2008, 22, 1677–1682. [Google Scholar] [CrossRef] [Green Version]
- Young, W. Laboratory strength assessment of athletes. New Stud. Athl. 1995, 10, 89. [Google Scholar]
- Healy, R.; Kenny, I.C.; Harrison, A.J. Reactive Strength Index: A Poor Indicator of Reactive Strength? Int. J. Sports Physiol. Perform. 2018, 13, 802–809. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Alvarez, C.; Garcia-Pinillos, F.; Sanchez-Sanchez, J.; Yanci, J.; Castillo, D.; Loturco, I.; Chaabene, H.; Moran, J.; Izquierdo, M. Optimal Reactive Strength Index: Is It an Accurate Variable to Optimize Plyometric Training Effects on Measures of Physical Fitness in Young Soccer Players? J. Strength Cond. Res. 2018, 32, 885–893. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Campillo, R.; Moran, J.; Drury, B.; Williams, M.; Keogh, J.W.; Chaabene, H.; Granacher, U. Effects of Equal Volume but Different Plyometric Jump Training Intensities on Components of Physical Fitness in Physically Active Young Males. J. Strength Cond. Res. 2019, 35, 1916–1923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brownstein, C.G.; Dent, J.P.; Parker, P.; Hicks, K.M.; Howatson, G.; Goodall, S.; Thomas, K. Etiology and Recovery of Neuromuscular Fatigue following Competitive Soccer Match-Play. Front. Physiol. 2017, 8, 831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes Müller, C.; da Cunha Neto, P.S.; da Silva dos Santos, E.J.; Oliveira, A.; dos Santos Legnani, R.F.; Legnani, E. Correlação entre percepção subjetiva do esforço e fadiga neuromuscular dos membros inferiores em atletas de futebol./The correlation between the rating of perceived exertion and neuromuscular fatigue on the lower body in soccer athletes. Cad. Educ. Física E Esporte 2020, 18, 37–41. [Google Scholar] [CrossRef]
- Wilson, G.J.; Wood, G.A.; Elliott, B.C. Optimal Stiffness of Series Elastic Component in a Stretch-Shorten Cycle Activity. J. Appl. Physiol. 1991, 70, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Simpson, J.D.; Miller, B.L.; O’Neal, E.K.; Chander, H.; Knight, A.C. Ground reaction forces during a drop vertical jump: Impact of external load training. Hum Mov Sci. 2018, 59, 12–19. [Google Scholar] [CrossRef]
- Balsalobre-Fernandez, C.; Kuzdub, M.; Poveda-Ortiz, P.; del Campo-Vecino, J. Validity and reliability of the push wearable device to measure movement velocity during the back squat exercise. J. Strength Cond. Res. 2016, 30, 1968–1974. [Google Scholar] [CrossRef]
- Lake, J.; Augustus, S.; Austin, K.; Comfort, P.; McMahon, J.; Mundy, P.; Haff, G.G. The reliability and validity of the bar-mounted PUSH Band (TM) 2.0 during bench press with moderate and heavy loads. J. Sports Sci. 2019, 37, 2685–2690. [Google Scholar] [CrossRef]
- Montalvo, S.; Gonzalez, M.P.; Dietze-Hermosa, M.S.; Eggleston, J.D.; Dorgo, S. Common Vertical Jump and Reactive Strength Index Measuring Devices: A Validity and Reliability Analysis. J. Strength Cond. Res. 2021, 35, 1234–1243. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Castillo, D.; Raya-Gonzalez, J.; Moran, J.; de Villarreal, E.S.; Lloyd, R.S. Effects of Plyometric Jump Training on Jump and Sprint Performance in Young Male Soccer Players: A Systematic Review and Meta-analysis. Sports Med. 2020, 50, 2125–2143. [Google Scholar] [CrossRef]
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, F.M.; Maffiuletti, N.A. Validity and Reliability of Optojump Photoelectric Cells for Estimating Vertical Jump Height. J. Strength Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef]
- Harrison, A.J.; Mc, C.C. The effect of a gluteal activation protocol on sprint and drop jump performance. J. Sports Med. Phys. Fit. 2017, 57, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Healy, R.; Kenny, I.C.; Harrison, A.J. Assessing Reactive Strength Measures in Jumping and Hopping Using the Optojump™ System. J. Hum. Kinet. 2016, 54, 23–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whelan, N.; O’Regan, C.; Harrison, A.J. Resisted sprints do not acutely enhance sprinting performance. J. Strength Cond. Res. 2014, 28, 1858–1866. [Google Scholar] [CrossRef] [PubMed]
- Gundersen, K. Muscle memory and a new cellular model for muscle atrophy and hypertrophy. J. Exp. Biol. 2016, 219, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, B.J.; Kernozek, T.W.; White, J.M.; Kline, D.E.; Wright, G.A.; Peng, H.T.; Huang, C.F. Quantification of vertical ground reaction forces of popular bilateral plyometric exercises. J. Strength Cond. Res. 2010, 24, 207–212. [Google Scholar] [CrossRef]
- Van Lieshout, K.G.; Anderson, J.G.; Shelburne, K.B.; Davidson, B.S. Intensity rankings of plyometric exercises using joint power absorption. Clin. Biomech. 2014, 29, 918–922. [Google Scholar] [CrossRef]
- Ebben, W.P.; Fauth, M.L.; Garceau, L.R.; Petushek, E.J. Kinetic Quantification of Plyometric Exercise Intensity. J. Strength Cond. Res. 2011, 25, 3288–3298. [Google Scholar] [CrossRef]
- Lehance, C.; Croisier, J.L.; Bury, T. Optojump system efficiency in the assessment of lower limbs explosive strength. Sci. Sport 2005, 20, 131–135. [Google Scholar] [CrossRef]
- Salami, S.; Wei, J.; Regan, M.; Scherr, D.; Siddiqui, J.; Kearney, M.; Eyre, R.; Dewolf, W.; Rubin, M.; Sanda, M. Body Mass Index and Prostate Size Improve Performance of a Prostate Cancer Risk Calculator at High Levels of Sensitivity for Predicting Prostate Cancer at Initial Prostate Biopsy: Results from a Prospective, Multi-Center Cohort. J. Urol. 2010, 183, E818–E819. [Google Scholar]
- Orser, K.; Agar-Newman, D.J.; Tsai, M.-C.; Klimstra, M. The validity of the Push Band 2.0 to determine speed and power during progressively loaded squat jumps. Sports Biomech. 2020. [Google Scholar] [CrossRef]
- Hughes, L.J.; Peiffer, J.J.; Scott, B.R. Reliability and Validity of Using the Push Band v2.0 to Measure Repetition Velocity in Free-Weight and Smith Machine Exercises. J. Strength Cond. Res. 2019, 36, 365–370. [Google Scholar]
Men (n = 12) | Women (n = 8) | Total (n = 20) | |
---|---|---|---|
Age (year) | 21.00 ± 1.71 | 21.00 ± 1.57 | 21.00 ± 1.64 |
Age group (year) | 18–24 | 18–23 | 18–24 |
Weight (kg) | 65.20 ± 8.68 | 62.92 ± 8.17 | 64.06 ± 8.43 |
Height (cm) | 178 ± 6.0 | 167 ± 4.0 | 172 ± 5.0 |
BMI (kg·m2) | 19.52 ± 2.63 | 21.77 ± 3.10 | 20.64 ± 2.87 |
Sig. | Bland–Altman (1.96 SD) | |
---|---|---|
RSI FP vs. PB2.0 | 0.389 | −0.047 (0.788–(−0.884)) |
RSI OPT vs. PB2.0 | 0.400 | −0.046 (0.882–(−0.789)) |
RSI OPT vs. FP | 0.701 | 0.001 (0.047–(−0.044)) |
HJ FP vs. OPT | 0.569 | 0.000 (0.004–(−0.004)) |
Regression Lin | |||
---|---|---|---|
Desv. Error | Sig. (95% CI) | CCI (95% CI) | |
RIS FP vs. PB2.0 | 0.143 | 0.691 | 0.703 (0.503–0.822) |
RSI OPT vs. PB2.0 | 0.143 | 0.677 | 0.704 (0.505–0.823) |
RSI OPT vs. FP | 0.007 | 0.761 | 0.999 (0.999–1.00) |
HJ FP vs. OPT | 0.006 | 0.691 | 1.00 (0.999–1.00) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoro-Bombú, R.; de la Paz Arencibia, L.; Buzzichelli, C.; Miranda-Oliveira, P.; Fernandes, O.; Santos, A.; Rama, L. The Validity of the Push Band 2.0 on the Reactive Strength Index Assessment in Drop Jump. Sensors 2022, 22, 4724. https://doi.org/10.3390/s22134724
Montoro-Bombú R, de la Paz Arencibia L, Buzzichelli C, Miranda-Oliveira P, Fernandes O, Santos A, Rama L. The Validity of the Push Band 2.0 on the Reactive Strength Index Assessment in Drop Jump. Sensors. 2022; 22(13):4724. https://doi.org/10.3390/s22134724
Chicago/Turabian StyleMontoro-Bombú, Raynier, Lázaro de la Paz Arencibia, Carlo Buzzichelli, Paulo Miranda-Oliveira, Orlando Fernandes, Amândio Santos, and Luis Rama. 2022. "The Validity of the Push Band 2.0 on the Reactive Strength Index Assessment in Drop Jump" Sensors 22, no. 13: 4724. https://doi.org/10.3390/s22134724
APA StyleMontoro-Bombú, R., de la Paz Arencibia, L., Buzzichelli, C., Miranda-Oliveira, P., Fernandes, O., Santos, A., & Rama, L. (2022). The Validity of the Push Band 2.0 on the Reactive Strength Index Assessment in Drop Jump. Sensors, 22(13), 4724. https://doi.org/10.3390/s22134724