An Adjusted Frequency-Domain Algorithm for Arc Array Bistatic SAR Data with One-Moving Transmitter
Abstract
:1. Introduction
2. Arc Array Bistatic SAR System
3. Imaging Processing of AA-BiSAR with One-Moving Transmitter
3.1. Signal Model
3.2. Residual Phase Compensation
3.3. Correction of Range Cell Migration
3.4. Azimuth Pulse Compression
4. Resolution Analysis
4.1. AA-BiSAR with Moving Transmitter
4.1.1. Azimuth Resolution
4.1.2. Ground-Range Resolution
4.2. The Spatial Resolution of AA-BiSAR with Moving Receiver
5. Simulation Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, D.; Liao, G.; Liao, Y.; Yang, L. Modified Omega-K algorithm for processing helicopter-borne frequency modulated continuous waveform rotating synthetic aperture radar data. J. Syst. Eng. Electron. 2015, 26, 476–485. [Google Scholar] [CrossRef]
- Du, X.; Huang, P.; Xu, W.; Tan, W.; Gao, Z.; Zhang, Z. Imaging Approach for Arc Array SAR Based on High-Order Approximation of Slant Range. J. Signal Processing 2019, 35, 809–815. [Google Scholar]
- Huang, Z.; Sun, J.; Tan, W.; Huang, P.; Qi, Y. Amplitude and Phase Errors Correction for Ground-based Arc Array SAR. In Proceedings of the 6th Asia-Pacific Conference on Synthetic Aperture Radar, APSAR 2019, Xiamen, China, 26–29 November 2019; Institute of Electrical and Electronics Engineers Inc.: Xiamen, China, 2019. [Google Scholar]
- Huang, Z.; Sun, J.; Tan, W.; Huang, P.; Han, K. Investigation of wavenumber domain imaging algorithm for ground-based arc array SAR. Sensors 2017, 17, 2950. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Wu, C.; Xu, W.; Huang, P.; Tan, W.; Hong, W. Vibration Error Compensation Imaging Algorithm for Arc Array SAR Besed on Parameter Estimation. In Proceedings of the 6th Asia-Pacific Conference on Synthetic Aperture Radar, APSAR 2019, Xiamen, China, 26–29 November 2019; Institute of Electrical and Electronics Engineers Inc.: Xiamen, China, 2019. [Google Scholar]
- Peng, X.; Wang, Y.; Hong, W.; Tan, W.; Wu, Y. Airborne downward looking sparse linear array 3-D SAR Heterogeneous parallel simulation. Remote Sens. 2013, 5, 5304–5329. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.Y.; Luo, Y.; Zhang, Q.; Hong, W.; Yeo, T.S. Precision Downward-Looking 3D Synthetic Aperture Radar Imaging with Sparse Linear Array and Platform Motion Parameters Estimation. Remote Sens. 2018, 10, 1957. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Li, K.; Xu, W.; Tan, W.; Gao, Z.; Li, Y. Focusing Arc-Array Bistatic Synthetic Aperture Radar Data Based on Keystone. Transform. Electron. 2019, 8, 1389. [Google Scholar] [CrossRef] [Green Version]
- Di Martino, G.; Iodice, A.; Natale, A.; Riccio, D. Time-Domain and Monostatic-like Frequency-Domain Methods for Bistatic SAR Simulation. Sensors 2021, 21, 5012. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.Y.; Bao, Y.; Mao, X.H.; Yan, H. Two-Dimensional Autofocus Approach for Bistatic SAR Polar Format Algorithm. In Proceedings of the International Symposium on Antennas and Propagation (ISAP), Taipei, Taiwan, 19–22 October 2021. [Google Scholar]
- Li, M.; Tan, G.; Yang, J.; Xu, X.; Li, B. An Imaging Algorithm for Bistatic SAR Based on the Motion Compensation and Orthogonal Decoupling. J. Signal Processing 2021, 37, 75–85. [Google Scholar]
- Liu, Z.; Yang, J.; Zhang, X. Nonlinear RCMC method for spaceborne/airborne forward-looking bistatic SAR. J. Syst. Eng. Electron. 2012, 23, 201–207. [Google Scholar] [CrossRef]
- Li, Z.; Wu, J.; Li, W.; Huang, Y.; Yang, J. One-stationary bistatic side-looking SAR imaging algorithm based on extended keystone transforms and nonlinear chirp scaling. IEEE Geosci. Remote Sens. Lett. 2013, 10, 211–215. [Google Scholar]
- Ding, J.; Li, Y.; Quan, Y.; Wu, C.; Wang, Z.; Mei, H. Analysis of Diving Configuration of Bistatic Forward-Looking SAR Based on Nonlinear Chirp Scaling Algorithm. In Proceedings of the 6th Asia-Pacific Conference on Synthetic Aperture Radar, APSAR 2019, Xiamen, China, 26–29 November 2019; Institute of Electrical and Electronics Engineers Inc.: Xiamen, China, 2019. [Google Scholar]
- Liang, M.; Su, W.; Gu, H. Focusing high-resolution high forward-looking bistatic sar with nonequal platform velocities based on keystone transform and modified nonlinear chirp scaling algorithm. IEEE Sens. J. 2019, 19, 901–908. [Google Scholar] [CrossRef]
- Jin, G.; Dong, Z.; He, F.; Yu, A. SAR Ground Moving Target Imaging Based on a New Range Model Using a Modified Keystone Transform. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3283–3295. [Google Scholar] [CrossRef]
- Wan, J.; Tan, X.; Chen, Z.; Li, D.; Liu, Q.; Zhou, Y.; Zhang, L. Refocusing of Ground Moving Targets with Doppler Ambiguity Using Keystone Transform and Modified Second-Order Keystone Transform for Synthetic Aperture Radar. Remote Sens. 2021, 13, 177. [Google Scholar] [CrossRef]
- Zeng, C.; Zhang, J.; Li, S.; Zhu, S.; Xu, J. Vibration Error Compensation with Helicopter-Borne Rotating Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
Symbol | Definition | Value |
---|---|---|
Carrier Frequency | 50.5 GHz | |
Signal Bandwidth | 650 MHz | |
Sweep Time | 0.15 ms | |
The Height of Receiver | 200 m | |
The Radius of Arc Array | 0.6 m | |
Velocity of Azimuth Angular | 30 rad/s | |
Array Beam Width (−3 dB) | 60° |
Experiment Number | Transmitter Speed Value | |
---|---|---|
1 | (0 m, 100 m, 1000 m) | 50 m/s |
2 | (0 m, 700 m, 1000 m) | 50 m/s |
3 | (0 m, 100 m, 1000 m) | 300 m/s |
Experiment Number | Target | Range | Azimuth | ||||||
---|---|---|---|---|---|---|---|---|---|
Resolutions (m) | PSLR (dB) | ISLR (dB) | Resolutions (°) | PSLR (dB) | ISLR (dB) | ||||
Theoretical | Actual | Theoretical | Actual | ||||||
1 | P1 | 0.354 | 0.357 | −13.273 | −9.754 | 0.608 | 0.613 | −12.210 | −8.618 |
P2 | 0.331 | 0.339 | −12.965 | −9.393 | 0.596 | 0.598 | −12.523 | −8.706 | |
P3 | 0.312 | 0.314 | −13.204 | −9.678 | 0.588 | 0.589 | −11.985 | −8.473 | |
2 | P1 | 0.569 | 0.571 | −13.330 | −9.755 | 0.608 | 0.610 | −11.328 | −8.200 |
P2 | 0.543 | 0.544 | −13.319 | −9.749 | 0.595 | 0.600 | −12.546 | −8.698 | |
P3 | 0.448 | 0.449 | −13.252 | −9.774 | 0.587 | 0.592 | −12.168 | −8.640 | |
3 | P1 | 0.352 | 0.353 | −13.326 | −9.767 | 0.529 | 0.531 | −12.046 | −8.744 |
P2 | 0.330 | 0.333 | −12.916 | −9.416 | 0.528 | 0.529 | −12.522 | −8.692 | |
P3 | 0.312 | 0.313 | −13.189 | −9.673 | 0.527 | 0.531 | −11.114 | −8.377 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, P.; Hao, L.; Tan, W.; Xu, W.; Qi, Y. An Adjusted Frequency-Domain Algorithm for Arc Array Bistatic SAR Data with One-Moving Transmitter. Sensors 2022, 22, 4725. https://doi.org/10.3390/s22134725
Huang P, Hao L, Tan W, Xu W, Qi Y. An Adjusted Frequency-Domain Algorithm for Arc Array Bistatic SAR Data with One-Moving Transmitter. Sensors. 2022; 22(13):4725. https://doi.org/10.3390/s22134725
Chicago/Turabian StyleHuang, Pingping, Lingxia Hao, Weixian Tan, Wei Xu, and Yaolong Qi. 2022. "An Adjusted Frequency-Domain Algorithm for Arc Array Bistatic SAR Data with One-Moving Transmitter" Sensors 22, no. 13: 4725. https://doi.org/10.3390/s22134725
APA StyleHuang, P., Hao, L., Tan, W., Xu, W., & Qi, Y. (2022). An Adjusted Frequency-Domain Algorithm for Arc Array Bistatic SAR Data with One-Moving Transmitter. Sensors, 22(13), 4725. https://doi.org/10.3390/s22134725