Biogenic VOCs Emission Profiles Associated with Plant-Pest Interaction for Phenotyping Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Potato-Nematode Study
2.2. Wheat-Insect Study
2.3. Sampling and Data Collection
2.4. Data Analysis
3. Results and Discussion
3.1. VOC Profiles from Potato Plants
3.2. VOC Profiles from Wheat Plants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sutherst, R.W.; Constable, F.; Finlay, K.J.; Harrington, R.; Luck, J.; Zalucki, M.P. Adapting to Crop Pest and Pathogen Risks under a Changing Climate: Crop Pest and Pathogen Risks. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 220–237. [Google Scholar] [CrossRef]
- Brilli, F.; Loreto, F.; Baccelli, I. Exploiting Plant Volatile Organic Compounds (VOCs) in Agriculture to Improve Sustainable Defense Strategies and Productivity of Crops. Front. Plant Sci. 2019, 10, 264. [Google Scholar] [CrossRef]
- Vivaldo, G.; Masi, E.; Taiti, C.; Caldarelli, G.; Mancuso, S. The Network of Plants Volatile Organic Compounds. Sci. Rep. 2017, 7, 11050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldwin, I.T. Plant Volatiles. Curr. Biol. 2010, 20, R392-7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fincheira, P.; Quiroz, A. Microbial Volatiles as Plant Growth Inducers. Microbiol. Res. 2018, 208, 63–75. [Google Scholar] [CrossRef]
- Andersen, E.J.; Ali, S.; Byamukama, E.; Yen, Y.; Nepal, M.P. Disease Resistance Mechanisms in Plants. Genes 2018, 9, 339 . [Google Scholar] [CrossRef] [Green Version]
- Monson, R.K. Metabolic and gene expression controls on the production of biogenic volatile organic compounds. In Tree Physiology; Springer: Dordrecht, The Netherlands, 2013; pp. 153–179. [Google Scholar] [CrossRef]
- Loreto, F.; Schnitzler, J.-P. Abiotic Stresses and Induced BVOCs. Trends Plant Sci. 2010, 15, 154–166. [Google Scholar] [CrossRef]
- Niinemets, U.; Kännaste, A.; Copolovici, L. Quantitative Patterns between Plant Volatile Emissions Induced by Biotic Stresses and the Degree of Damage. Front. Plant Sci. 2013, 4, 262. [Google Scholar] [CrossRef] [Green Version]
- Lazazzara, V.; Avesani, S.; Robatscher, P.; Oberhuber, M.; Pertot, I.; Schuhmacher, R.; Perazzolli, M. Biogenic Volatile Organic Compounds in the Grapevine Response to Pathogens, Beneficial Microorganisms, Resistance Inducers, and Abiotic Factors. J. Exp. Bot. 2022, 73, 529–554. [Google Scholar] [CrossRef]
- Materić, D.; Bruhn, D.; Turner, C.; Morgan, G.; Mason, N.; Gauci, V. Methods in Plant Foliar Volatile Organic Compounds Research. Appl. Plant Sci. 2015, 3, 1500044. [Google Scholar] [CrossRef]
- Lima, F.S.; Mattos, V.S.; Silva, E.S.; Carvalho, M.A.; Teixeira, R.A.; Silva, J.C.; Correa, V.R. Nematodes affecting potato and sustainable practices for their management. In Potato—From Incas to All Over the World; IntechOpen: London, UK, 2018; p. 107. [Google Scholar] [CrossRef]
- Austin, S.; Pohlman, J.D.; Brown, C.R.; Mojtahedi, H.; Santo, G.S.; Douches, D.S.; Helgeson, J.P. Interspecific Somatic Hybridization between Solanum tuberosum L. and S. bulbocastanum Dun. as a Means of Transferring Nematode Resistance. Am. Potato J. 1993, 70, 485–495. [Google Scholar] [CrossRef]
- Bali, S.; Vining, K.; Gleason, C.; Majtahedi, H.; Brown, C.R.; Sathuvalli, V. Transcriptome Profiling of Resistance Response to Meloidogyne Chitwoodi Introgressed from Wild Species Solanum bulbocastanum into Cultivated Potato. BMC Genom. 2019, 20, 907. [Google Scholar] [CrossRef] [PubMed]
- Davies, L.J.; Brown, C.R.; Elling, A.A. Calcium Is Involved in the R Mc1 (Blb)-Mediated Hypersensitive Response against Meloidogyne chitwoodi in Potato. Plant Cell Rep. 2015, 34, 167–177. [Google Scholar] [CrossRef]
- Mojtahedi, H.; Brown, C.R.; Riga, E.; Zhang, L.H. A New Pathotype of Meloidogyne Chitwoodi Race 1 from Washington State. Plant Dis. 2007, 91, 1051. [Google Scholar] [CrossRef] [PubMed]
- Shukle, R.H. Hessian Fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae). Encycl. Entomol. 2003, 1, 27–31. [Google Scholar]
- Subramanyam, S.; Sardesai, N.; Minocha, S.C.; Zheng, C.; Shukle, R.H.; Williams, C.E. Hessian Fly Larval Feeding Triggers Enhanced Polyamine Levels in Susceptible but Not Resistant Wheat. BMC Plant Biol. 2015, 15, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castle del Conte, S.C.; Bosque-Pérez, N.A.; Schotzko, D.J.; Guy, S.O. Impact of Tillage Practices on Hessian Fly-Susceptible and Resistant Spring Wheat Cultivars. J. Econ. Entomol. 2005, 98, 805–813. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Y.; Chen, M.-S.; Su, Z.; Liu, Y.; Xu, Y.; La, G.; Bai, G. Identification of a Major QTL for Hessian Fly Resistance in Wheat Cultivar ‘Chokwang’. Crop J. 2021. [Google Scholar] [CrossRef]
- Sadeghi, R.; Odubiyi, S.; Nikoukar, A.; Schroeder, K.L.; Rashed, A. Mayetiola destructor (Diptera: Cecidmyiidae) Host Preference and Survival on Small Grains with Respect to Leaf Reflectance and Phytohormone Concentrations. Sci. Rep. 2021, 11, 4761. [Google Scholar] [CrossRef]
- Schotzko, D.J.; Bosque-Pérez, N.A. Relationship between Hessian fly infestation density and early seedling growth of resistant and susceptible wheat. J. Agric. Urban Entomol. 2002, 19, 95–107. [Google Scholar]
- Iyer, S.; Mattinson, D.S.; Fellman, J.K. Study of the Early Events Leading to Cassava Root Postharvest Deterioration. Trop. Plant Biol. 2010, 3, 151–165. [Google Scholar] [CrossRef]
- Marzougui, A.; Rajendran, A.; Mattinson, D.S.; Ma, Y.; McGee, R.J.; Garcia-Perez, M.; Ficklin, S.P.; Sankaran, S. Evaluation of Biogenic Markers-Based Phenotyping for Resistance to Aphanomyces Root Rot in Field Pea. Inf. Process. Agric. 2022, 9, 1–10. [Google Scholar] [CrossRef]
- Sangjan, W.; Marzougui, A.; Mattinson, D.S.; Schroeder, B.K.; Bates, A.A.; Khot, L.R.; Sankaran, S. Identification of Volatile Biomarkers for High-Throughput Sensing of Soft Rot and Pythium Leak Diseases in Stored Potatoes. Food Chem. 2022, 370, 130910. [Google Scholar] [CrossRef]
- Lin, J.; Wang, D.; Chen, X.; Köllner, T.G.; Mazarei, M.; Guo, H.; Pantalone, V.R.; Arelli, P.; Stewart, C.N., Jr.; Wang, N.; et al. An (E,E)-α-Farnesene Synthase Gene of Soybean Has a Role in Defence against Nematodes and Is Involved in Synthesizing Insect-Induced Volatiles. Plant Biotechnol. J. 2017, 15, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Castorina, G.; Grassi, F.; Consonni, G.; Vitalini, S.; Oberti, R.; Calcante, A.; Ferrari, E.; Bononi, M.; Iriti, M. Characterization of the Biogenic Volatile Organic Compounds (BVOCs) and Analysis of the PR1 Molecular Marker in Vitis vinifera L. Inoculated with the Nematode Xiphinema index. Int. J. Mol. Sci. 2020, 21, 4485. [Google Scholar] [CrossRef]
- Habash, S.S.; Könen, P.P.; Loeschcke, A.; Wüst, M.; Jaeger, K.-E.; Drepper, T.; Grundler, F.M.W.; Schleker, A.S.S. The Plant Sesquiterpene Nootkatone Efficiently Reduces Heterodera Schachtii Parasitism by Activating Plant Defense. Int. J. Mol. Sci. 2020, 21, 9627. [Google Scholar] [CrossRef]
- De Freitas Silva, M.; Paulo Campos, V.; Barros, A.F.; Pereira da Silva, J.C.; Pedroso, M.P.; de Jesus Silva, F.; Gomes, V.A.; Justino, J.C. Medicinal Plant Volatiles Applied against the Root-Knot Nematode Meloidogyne incognita. Crop Prot. 2020, 130, 105057. [Google Scholar] [CrossRef]
- Jiménez-Martínez, E.S.; Bosque-Pérez, N.A.; Berger, P.H.; Zemetra, R.S.; Ding, H.; Eigenbrode, S.D. Volatile Cues Influence the Response of Rhopalosiphum padi (Homoptera: Aphididae) to Barley Yellow Dwarf Virus–Infected Transgenic and Untransformed Wheat. Environ. Entomol. 2004, 33, 1207–1216. [Google Scholar] [CrossRef] [Green Version]
- Tholl, D.; Hossain, O.; Weinhold, A.; Röse, U.S.R.; Wei, Q. Trends and Applications in Plant Volatile Sampling and Analysis. Plant J. 2021, 106, 314–325. [Google Scholar] [CrossRef]
- Kothawade, G.S.; Sankaran, S.; Bates, A.A.; Schroeder, B.K.; Khot, L.R. Feasibility of Volatile Biomarker-Based Detection of Pythium Leak in Postharvest Stored Potato Tubers Using Field Asymmetric Ion Mobility Spectrometry. Sensors 2020, 20, 7350. [Google Scholar] [CrossRef]
- Kothawade, G.S.; Chandel, A.K.; Khot, L.R.; Sankaran, S.; Bates, A.A.; Schroeder, B.K. Field Asymmetric Ion Mobility Spectrometry for Pre-Symptomatic Rot Detection in Stored Ranger Russet and Russet Burbank Potatoes. Postharvest Biol. Technol. 2021, 181, 111679. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valencia-Ortiz, M.; Marzougui, A.; Zhang, C.; Bali, S.; Odubiyi, S.; Sathuvalli, V.; Bosque-Pérez, N.A.; Pumphrey, M.O.; Sankaran, S. Biogenic VOCs Emission Profiles Associated with Plant-Pest Interaction for Phenotyping Applications. Sensors 2022, 22, 4870. https://doi.org/10.3390/s22134870
Valencia-Ortiz M, Marzougui A, Zhang C, Bali S, Odubiyi S, Sathuvalli V, Bosque-Pérez NA, Pumphrey MO, Sankaran S. Biogenic VOCs Emission Profiles Associated with Plant-Pest Interaction for Phenotyping Applications. Sensors. 2022; 22(13):4870. https://doi.org/10.3390/s22134870
Chicago/Turabian StyleValencia-Ortiz, Milton, Afef Marzougui, Chongyuan Zhang, Sapinder Bali, Steven Odubiyi, Vidyasagar Sathuvalli, Nilsa A. Bosque-Pérez, Michael O. Pumphrey, and Sindhuja Sankaran. 2022. "Biogenic VOCs Emission Profiles Associated with Plant-Pest Interaction for Phenotyping Applications" Sensors 22, no. 13: 4870. https://doi.org/10.3390/s22134870
APA StyleValencia-Ortiz, M., Marzougui, A., Zhang, C., Bali, S., Odubiyi, S., Sathuvalli, V., Bosque-Pérez, N. A., Pumphrey, M. O., & Sankaran, S. (2022). Biogenic VOCs Emission Profiles Associated with Plant-Pest Interaction for Phenotyping Applications. Sensors, 22(13), 4870. https://doi.org/10.3390/s22134870