Pixel Image Analysis and Its Application with an Alcohol-Based Liquid Scintillator for Particle Therapy
Abstract
:1. Introduction
2. Introduction
2.1. Brief Synthesis of AbLS
2.2. Practical Range, Absorbed Dose, and Beam Profile in Electron Beam Therapy
2.3. Colorimetry for a Fluorescent Image of AbLS
2.4. Sinogram as an Application of Inverse Problems
3. Experiment and MC Simulation
4. Results
4.1. Range Measurement
4.2. Sinogram Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klein, E.E.; Hanley, J.; Bayouth, J.; Yin, F.F.; Simon, W.; Dresser, S.; Serago, C.; Aguirre, F.; Ma, L.; Arjomandy, B.; et al. Task Group 142 report: Quality assurance of medical accelerators. Med. Phys. 2009, 36, 4197–4212. [Google Scholar] [CrossRef] [PubMed]
- Fraass, B.; Doppke, K.; Hunt, M.; Kutcher, G.; Starkschall, G.; Stern, R.; Dyke, J.V. American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning. Med. Phys. 1998, 25, 1773–1829. [Google Scholar] [CrossRef] [PubMed]
- O’Keeffe, S.; Fitzpatrick, C.; Lewis, E.; Al-Shamma’a, A.I. A review of optical fiber radiation dosimeters. Sens. Rev. 2008, 28, 136–142. [Google Scholar] [CrossRef]
- Olko, P. Advantages and disadvantages of luminescence dosimetry. Radiat. Meas. 2010, 45, 506–511. [Google Scholar] [CrossRef]
- Pönisch, F.; Archambault, L.; Briere, T.M.; Sahoo, N.; Mohan, R.; Beddar, S.; Gillin, M.T. Liquid scintillator for 2D dosimetry for high-energy photon beams. Med. Phys. 2009, 36, 1478–1485. [Google Scholar] [CrossRef] [PubMed]
- Archer, J.; Li, E.; Petasecca, M.; Lerch, M.; Rosenfeld, A.; Carolan, M. High-resolution fiber-optic dosimeters for microbeam radiation therapy. Med. Phys. 2017, 44, 1965–1968. [Google Scholar] [CrossRef] [PubMed]
- Belley, M.D.; Stanton, I.N.; Hadsell, M.; Ger, R.; Langloss, B.W.; Lu, J.; Zhou, O.; Chang, S.X.; Therien, M.J.; Yoshizumi, T.T. Fiber-optic detector for real time dosimetry of a micro-planar X-ray beam. Med. Phys. 2015, 42, 1966–1972. [Google Scholar] [CrossRef] [Green Version]
- Beddar, S.; Archambault, L.; Sahoo, N.; Poenisch, F.; Chen, G.T.; Gillin, M.T.; Mohan, R. Exploration of the potential of liquid scintillators for real-time 3D dosimetry of intensity modulated proton beams. Med. Phys. 2009, 36, 1736–1743. [Google Scholar] [CrossRef] [Green Version]
- von Voigts-Rhetz, P.; Czarnecki, D.; Zink, K. Effective point of measurement for parallel plate and cylindrical ion chambers in megavoltage electron beams. Z Med. Phys. 2014, 24, 216–223. [Google Scholar] [CrossRef]
- Wegener, S.; Sauer, O.A. The effective point of measurement for depth-dose measurements in small MV photon beams with different detectors. Med. Phys. 2019, 46, 5209–5215. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Lee, W.; Melis, A.; Elmughrabi, A.; Lee, K.; Park, C.; Yeom, J.-Y. A Review of Inorganic Scintillation Crystals for Extreme Environments. Crystals. 2021, 11, 669. [Google Scholar] [CrossRef]
- Lecoq, P.; Gektin, A.; Korzhik, M. Inorganic Scintillators for Detector Systems. In Physical Principles and Crystal Engineering, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Kirov, A.S.; Shrinivas, S.; Hurlbut, C.; Dempsey, J.F.; Binns, W.R.; Poblete, J.L. New water equivalent liquid scintillation solutions for 3D dosimetry. Med. Phys. 2000, 27, 1156–1164. [Google Scholar] [CrossRef] [PubMed]
- Kirov, A.S.; Piao, J.Z.; Mathur, N.K.; Miller, T.R.; Devic, S.; Trichter, S.; Zaider, M.; Soares, C.G.; LoSasso, T. The three-dimensional scintillation dosimetry method: Test for a 106Ru eye plaque applicator. Phys. Med. Biol. 2005, 50, 3063. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.C.; Choi, J.Y.; Joo, K.K.; Park, S.Y.; Song, Y.S.; Woo, H.J. Feasibility Study of an Alcohol-Based Liquid Scintillation Detector and Its Application. Adv. High Energy Phys. 2021, 2021, 10. [Google Scholar] [CrossRef]
- Kim, B.C.; Kim, Y.J.; Choi, J.Y.; Joo, K.K.; Park, S.Y.; Song, Y.S.; Woo, H.J. Range measurement and fluorescence imaging analysis using electron beams with new liquid scintillator based on alcohol. Rev. Sci. Instrum. 2021, 92, 014103. [Google Scholar] [CrossRef]
- Park, K.S.; Park, J.S.; Kim, B.C.; Shin, J.W.; Ahn, J.K. (Reno Collaboration), Construction and properties of acrylic vessels in the RENO detector. Nucl. Instrum. Methods Phys. Res. A 2012, 686, 91–99. [Google Scholar] [CrossRef]
- Beriguete, W.; Cao, J.; Ding, Y.; Hans, S.; Karsten, M.H. (Daya Bay Collaboration), Production of Gadolinium-loaded Liquid Scintillator for the Daya Bay Reactor Neutrino Experiment. Nucl. Instrum. Methods Phys. Res. A 2014, 763, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.J.; Inokuti, M.; Anderson, H.H.; Bichsel, H.; Dennis, J.A.; Powers, D.; Seltzer, S.M.; Turner, J.E. Stopping Powers for Electrons and Positrons. J. Int. Comm. Radiat. Units Meas. 1984, 19, 1. [Google Scholar]
- Berger, M.J.; Inokuti, M.; Andersen, H.H.; Bichsel, H.; Powers, D.; Seltzer, S.M.; Thwaites, D.; Watt, D.E. Stopping Powers and Ranges for Protons and Alpha Particles. J. Int. Comm. Radiat. Units Meas. 1993, 25, 15. [Google Scholar]
- Sia, J.; Szmyd, R.; Hau, E.; Gee, H.E. Molecular Mechanisms of Radiation-Induced Cancer Cell Death: A Primer. Front Cell Dev. Biol. 2020, 8, 41. [Google Scholar] [CrossRef]
- Attix, F.H. Introduction to Radiological Physics and Radiation Dosimetry, 1st ed.; WILEY-VCH: Hoboken, NJ, USA, 1991; ISBN 9780471011460. [Google Scholar]
- Bergonié, J.; Tribondeau, L. Interpretation of some results from radiotherapy and an attempt to determine a rational treatment technique 1906. Yale J. Biol. Med. 2003, 76, 181–182. [Google Scholar] [PubMed]
- Belosi, M.F.; Rodriguez, M.; Fogliata, A.; Cozzi, L.; Sempau, J.; Clivio, A.; Nicolini, G.; Vanetti, E.; Krauss, H.; Khamphan, C.; et al. Monte Carlo simulation of TrueBeam flattening-filter-free beams using Varian phase-space files: Comparison with experimental data. Med. Phys. 2014, 41, 051707. [Google Scholar] [CrossRef]
- CIE. Commission Internationale de l’Eclairage Huitieme Session 1931; Cambridge University Press: Cambridge, UK, 1932. [Google Scholar]
- Maître, H. From Photon to Pixel, 2nd ed.; Wiley: Hoboken, NJ, USA, 2017; ISBN 9781786301376. [Google Scholar]
- Sural, S.; Qian, G.; Pramanik, S. Segmentation and histogram generation using the HSV color space for image retrieval. IEEE 2002, 2, 7597025. [Google Scholar]
- Smith, A.R. Color gamut transform pairs. ACM SIGGRAPH Comput. Graph. 1978, 12, 12–19. [Google Scholar] [CrossRef]
- Kirsch, A. An Introduction to the Mathematical Theory of Inverse Problems, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 9781441984746. [Google Scholar]
- Richard, C.A.; Borchers, B.; Clifford, H.T. Parameter Estimation and Inverse Problems, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128046517. [Google Scholar]
- Murty, R.C. Effective Atomic Numbers of Heterogeneous Materials. Nature 1965, 207, 398–399. [Google Scholar] [CrossRef]
- Willemink, M.J.; Persson, M.; Pourmorteza, A.; Norbert, J.P.; Fleischmann, D. Photon-counting CT: Technical Principles and Clinical Prospects. Radiology 2018, 289, 293–312. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, M. Determination of Tungsten Target Parameters for Transmission X-ray Tube: A Simulation Study Using Geant4. Nucl. Eng. Technol. 2016, 48, 795–798. [Google Scholar] [CrossRef] [Green Version]
- Radon, J. On the determination of functions from their integral values along certain manifolds. IEEE Trans. Med. Imaging 1986, 5, 170–176. [Google Scholar] [CrossRef]
- Tomar, S. Converting video formats with FFmpeg. Linux J. 2006, 2006, 10. [Google Scholar]
- Walt, S.V.D. The scikit-image contributors. scikit-image: Image processing in Python. PeerJ 2014, 2, 453. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K. Recent developments in Geant4. Nucl. Instrum. Methods Phys. Res. A 2016, 835, 186–225. [Google Scholar] [CrossRef]
- Antcheva, I.; Ballintijn, M.; Biskup, M. ROOT—A C++ framework for petabyte data storage, statistical analysis and visualization. Comput. Phys. Commun. 2009, 180, 2499–2512. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.; Coursey, J.; Zucker, M. ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions (Version 1.21). Available online: https://physics.nist.gov/Star (accessed on 11 January 2022).
- Capote, R.; Jeraj, R.; Ma, C.M.; Rogers, D.W.O.; Sanchez, D.F.; Sempau, J.; Seuntjens, J.; Siebers, J.V. Phase-Space Database for External Beam Radiotherapy. Summary Report of a Consultants’ Meeting; (INDC(NDS)—0484); IAEA: Vienna, Austria, 2006. [Google Scholar]
- Jan, S.; Benoit, D.; Becheva, E.; Carlier, T.; Cassol, F.; Descourt, P.; Frisson, T.; Grevillot, L.; Guigues, L.; Maigne, L. GATE V6: A major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys. Med. Biol. 2011, 56, 881–901. [Google Scholar] [CrossRef]
- Perry, C.F.; Zhang, P.; Nunes, F.B.; Jordan, I.; von Conta, A.; Wörner, H.J. Ionization Energy of Liquid Water Revisited. J. Phys. Chem. Lett. 2020, 11, 1789–1794. [Google Scholar] [CrossRef]
- Choi, J.W.; Choi, J.Y.; Joo, K.K.; Kim, B.C. Feasibility study of a portable and fast spatial dosimeter using an alcohol-based liquid scintillator and a digital camera. J. Korean Phys. Soc. 2021, 79, 810–817. [Google Scholar] [CrossRef]
- Andreo, P.; Burns, D.T.; Nahum, A.E.; Seuntjens, J.; Attix, F.H. Fundamentals of Ionizaing Radiation Dosimetry, 1st ed.; WILEY-VCH: Hoboken, NJ, USA, 2017; ISBN 9783527409211. [Google Scholar]
- Eyges, L. Multiple scattering with energy loss. Phys. Rev. 1948, 74, 1534–1535. [Google Scholar] [CrossRef]
- Nghia, T.V.; Robert, C.A.; Drakopoulos, M.; Connolley, T. Data processing methods and data acquisition for samples larger than the field of view in parallel-beam tomography. Opt. Express 2021, 29, 17849–17874. [Google Scholar]
- Azevedo, S.G.; Schneberk, D.J.; Fitch, J.P.; Martz, H.E. Calculation of the rotational centers in computed tomography sonograms. IEEE Trans. Nucl. Sci. 1990, 37, 1525–1540. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.-W.; Choi, J.-Y.; Jang, H.; Joo, K.-K.; Kim, B.-C. Pixel Image Analysis and Its Application with an Alcohol-Based Liquid Scintillator for Particle Therapy. Sensors 2022, 22, 4876. https://doi.org/10.3390/s22134876
Choi J-W, Choi J-Y, Jang H, Joo K-K, Kim B-C. Pixel Image Analysis and Its Application with an Alcohol-Based Liquid Scintillator for Particle Therapy. Sensors. 2022; 22(13):4876. https://doi.org/10.3390/s22134876
Chicago/Turabian StyleChoi, Ji-Won, Ji-Young Choi, Hanil Jang, Kyung-Kwang Joo, and Byoung-Chan Kim. 2022. "Pixel Image Analysis and Its Application with an Alcohol-Based Liquid Scintillator for Particle Therapy" Sensors 22, no. 13: 4876. https://doi.org/10.3390/s22134876
APA StyleChoi, J. -W., Choi, J. -Y., Jang, H., Joo, K. -K., & Kim, B. -C. (2022). Pixel Image Analysis and Its Application with an Alcohol-Based Liquid Scintillator for Particle Therapy. Sensors, 22(13), 4876. https://doi.org/10.3390/s22134876