Classification of Tea Leaves Based on Fluorescence Imaging and Convolutional Neural Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Image Acquisition
2.2. Sample
2.3. Image Preprocessing
2.3.1. Region Extraction
2.3.2. Data Augmentation
2.3.3. Deep Learning Model
VGG16 Model
ResNet-34 Model
Transfer Learning
2.3.4. RGB to Grayscale Converting
2.4. Evaluation Method
2.5. Flowchart of the Proposed Methodology
3. Results
3.1. Analysis of Fluorescence Images of Tea
3.2. Analysis of White-Light Images of Tea
3.3. Comparism of RGB-Image-Based Training Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hong, B.; Zhang, Y. Research on the influence of attention and emotion of tea drinkers based on artificial neural network. Math. Biosci. Eng. 2021, 18, 3423–3434. [Google Scholar] [CrossRef] [PubMed]
- Riemersma, R.A.; Rice-Evans, C.A.; Tyrrell, R.M.; Clifford, M.N.; Lean, M.E. Tea flavonoids and cardiovascular health. QJM 2001, 94, 277–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.; Mukhtar, H. Tea and Health: Studies in Humans. Curr. Pharm. Des. 2013, 19, 6141–6147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Han, Z.; Granato, D. Polyphenols in foods: Classification, methods of identification, and nutritional aspects in human health. Adv. Food. Nutr. Res. 2021, 98, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Potenza, M.A.; Marasciulo, F.L.; Tarquinio, M.; Tiravanti, E.; Colantuono, G.; Federici, A.; Kim, J.A.; Quon, M.J.; Montagnani, M. EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E1378–E1387. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Ye, Y.; He, H.; Dong, C. Evaluation of green tea sensory quality via process characteristics and image information. Food Bioprod. Process. 2017, 102, 116–122. [Google Scholar] [CrossRef]
- Ren, G.; Liu, Y.; Ning, J.; Zhang, Z. Assessing black tea quality based on visible–near infrared spectra and kernel-based methods. J. Food Compos. Anal. 2021, 98, 103810. [Google Scholar] [CrossRef]
- Cardoso, V.G.K.; Poppi, R.J. Non-invasive identification of commercial green tea blends using NIR spectroscopy and support vector machine. Microchem. J. 2021, 164, 106052. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Xie, H.; Li, L.; Ning, J.; Zhang, Z. Quality evaluation of Keemun black tea by fusing data obtained from near-infrared reflectance spectroscopy and computer vision sensors. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 252, 119522. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, X.; Wu, Z.; Su, J.; Cai, G. An efficient tea quality classification algorithm based on near infrared spectroscopy and random Forest. J. Food Process Eng. 2020, 44, e13604. [Google Scholar] [CrossRef]
- Li, X.L.; Zhou, R.Q.; Xu, K.W.; Xu, J.; Jin, J.J.; Fang, H.; He, Y. Rapid Determination of Chlorophyll and Pheophytin in Green Tea Using Fourier Transform Infrared Spectroscopy. Molecules 2018, 23, 1010. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Yan, Y.; Li, J.; Chen, X.; Jiang, H. Classification of Tea Quality Levels Using Near-Infrared Spectroscopy Based on CLPSO-SVM. Foods 2022, 11, 1658. [Google Scholar] [CrossRef]
- Wang, J.M.; Zheng, P.C.; Liu, H.D.; Fang, L. Classification of Chinese tea leaves using laser-induced breakdown spectroscopy combined with the discriminant analysis method. Anal. Methods 2016, 8, 3204–3209. [Google Scholar] [CrossRef]
- Valera, P.; Pablos, F.; Gustavogonzalez, A. Classification of tea samples by their chemical composition using discriminant analysis. Talanta 1996, 43, 415–419. [Google Scholar] [CrossRef]
- Lim, C.M.; Carey, M.; Williams, P.N.; Koidis, A. Rapid classification of commercial teas according to their origin and type using elemental content with X-ray fluorescence (XRF) spectroscopy. Curr. Res. Food Sci. 2021, 4, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Gu, Y. A Machine Learning Method for the Fine-Grained Classification of Green Tea with Geographical Indication Using a MOS-Based Electronic Nose. Foods 2021, 10, 795. [Google Scholar] [CrossRef]
- Taylor, S.J.; McDowell, I.J. Rapid classification by HPLC of plant pigments in fresh tea (camellia sinensis l) leaf. J. Sci. Food Agric. 1991, 57, 287–291. [Google Scholar] [CrossRef]
- Song, W.; Jiang, N.; Wang, H.; Vincent, J. Use of smartphone videos and pattern recognition for food authentication. Sens. Actuators B Chem. 2020, 304, 127247. [Google Scholar] [CrossRef]
- Hu, G.; Fang, M. Using a multi-convolutional neural network to automatically identify small-sample tea leaf diseases. Sustain. Comput. Inform. Syst. 2022, 35, 100696. [Google Scholar] [CrossRef]
- Ma, Z.; Ling, H.; Song, Y.Z.; Hospedales, T.; Wei, J.; Peng, Y.; Han, A. Recent Advantages of Computer Vision. IEEE Access 2018, 6, 31481–31485. [Google Scholar] [CrossRef]
- Diniz, P.H.G.D.; Dantas, H.V.; Melo, K.D.T.; Barbosa, M.F.; Harding, D.P.; Nascimento, E.C.L.; Pistonesi, M.F.; Band, B.S.F.; Araujo, M.C.U. Using a simple digital camera and SPA-LDA modeling to screen teas. Anal. Methods 2012, 4, 2648–2652. [Google Scholar] [CrossRef]
- Bakhshipour, A.; Sanaeifar, A.; Payman, S.H.; de la Guardia, M. Evaluation of Data Mining Strategies for Classification of Black Tea Based on Image-Based Features. Food Anal. Methods 2017, 11, 1041–1050. [Google Scholar] [CrossRef]
- Gill, G.S.; Kumar, A.; Agarwal, R. Nondestructive grading of black tea based on physical parameters by texture analysis. Biosyst. Eng. 2013, 116, 198–204. [Google Scholar] [CrossRef]
- Gaba, I.; Ramamurthy, B. Identification of the Quality of Tea Leaves by Using Artificial Intelligence Techniques: A Review. ECS Trans. 2022, 102, 2053–2071. [Google Scholar] [CrossRef]
- Bakhshipour, A.; Zareiforoush, H.; Bagheri, I. Application of decision trees and fuzzy inference system for quality classification and modeling of black and green tea based on visual features. J. Food Meas. Charact. 2020, 14, 1402–1416. [Google Scholar] [CrossRef]
- Guang, W.; Zhonghui, C.; Hongbo, F.; Jianwei, Y.; Wenyong, Z.; Benliang, X. Classification of fresh tea leaf based on random forest model by feature fusion. J. South China Agric. Univ. 2021, 42, 125–132. [Google Scholar] [CrossRef]
- Cui, Q.; Yang, B.; Liu, B.; Li, Y.; Ning, J. Tea Category Identification Using Wavelet Signal Reconstruction of Hyperspectral Imagery and Machine Learning. Agriculture 2022, 12, 1085. [Google Scholar] [CrossRef]
- Li, Y.; Sun, J.; Wu, X.; Lu, B.; Wu, M.; Dai, C. Grade Identification of Tieguanyin Tea Using Fluorescence Hyperspectra and Different Statistical Algorithms. J. Food Sci. 2019, 84, 2234–2241. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, L.; Huang, P.; Luo, X.; Wang, P.; Kang, Z. Reliable Identification of Oolong Tea Species: Nondestructive Testing Classification Based on Fluorescence Hyperspectral Technology and Machine Learning. Agriculture 2021, 11, 1106. [Google Scholar] [CrossRef]
- Kamrul, M.H.; Rahman, M.; Robin, M.; Hossain, M.S.; Paul, P. A Deep Learning Based Approach on Categorization of Tea Leaf. In Proceedings of the ICCA 2020: International Conference on Computing Advancements, Dhaka, Bangladesh, 10–12 January 2020. [Google Scholar]
- Latha, R.S.; Sreekanth, G.R.; Suganthe, R.C.; Rajadevi, R.; Inbaraj, B. Automatic Detection of Tea Leaf Diseases using Deep Convolution Neural Network. In Proceedings of the 2021 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India, 27–29 January 2021. [Google Scholar]
- Banerjee, P.; Banerjee, S.; Barnwal, R.P. Explaining deep-learning models using gradient-based localization for reliable tea-leaves classifications. In Proceedings of the 2022 IEEE Fourth International Conference on Advances in Electronics, Computers and Communications (ICAECC), Bengaluru, India, 10–11 January 2022; pp. 1–6. [Google Scholar]
- Mei, L.; Lundin, P.; Brydegaard, M.; Gong, S.Y.; Tang, D.S.; Somesfalean, G.; He, S.L.; Svanberg, S. Tea classification and quality assessment using laser-induced fluorescence and chemometric evaluation. Appl. Opt. 2012, 51, 803–811. [Google Scholar] [CrossRef]
- Hassoun, A.; Sahar, A.; Lakhal, L.; Aït-Kaddour, A. Fluorescence spectroscopy as a rapid and non-destructive method for monitoring quality and authenticity of fish and meat products: Impact of different preservation conditions. LWT 2019, 103, 279–292. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.; Dai, Z.; Cui, L.; Lin, H.; Li, Z.; Wu, K.; Liu, G. Quantitative Detection of Extra Virgin Olive Oil Adulteration, as Opposed to Peanut and Soybean Oil, Employing LED-Induced Fluorescence Spectroscopy. Sensors 2022, 22, 1227. [Google Scholar] [CrossRef]
- Dong, Y.J.; Liu, X.; Mei, L.; Feng, C.; Yan, C.S.; He, S.L. LED-induced fluorescence system for tea classification and quality assessment. J. Food Eng. 2014, 137, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Lu, H.; Yong, Z.; Yan, C.; He, S. Fast two-dimensional fluorescence correlation spectroscopy technique for tea quality detection. Appl. Opt. 2015, 54, 7032–7036. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Dong, Y.; Xiao, W.; Yin, B.; Yan, C.; He, S. LED-induced fluorescence spectroscopy technique for apple freshness and quality detection. Postharvest Biol. Tec. 2016, 119, 27–32. [Google Scholar] [CrossRef]
- Luo, S.; Yan, C.S.; Chen, D.R. Preliminary study on coffee type identification and coffee mixture analysis by light emitting diode induced fluorescence spectroscopy. Food Control 2022, 138, 109044. [Google Scholar] [CrossRef]
- Mukunda, D.C.; Joshi, V.K.; Mahato, K.K. Light emitting diodes (LEDs) in fluorescence-based analytical applications: A review. Appl. Spectrosc. Rev. 2020, 57, 1–38. [Google Scholar] [CrossRef]
- Tanajura da Silva, C.E.; Filardi, V.L.; Pepe, I.M.; Chaves, M.A.; Santos, C.M.S. Classification of food vegetable oils by fluorimetry and artificial neural networks. Food Control 2015, 47, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Li, Z.; Lu, H.; Sun, S.; Chen, F.; Wei, K.; Ming, D. Robust Classification of Tea Based on Multi-Channel LED-Induced Fluorescence and a Convolutional Neural Network. Sensors 2019, 19, 4687. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv e-prints 2014, arXiv:1409.1556. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
Channel for Training | Learning Rate | Batch Size | VGG16 | ResNet-34 |
---|---|---|---|---|
Accuracy (%) | Accuracy (%) | |||
R | 10−3 | 32 | 72.5 | 70 |
G | 72.5 | 80 | ||
B | 77.5 | 72.5 | ||
Grayscale | 72.5 | 70 | ||
RGB | 97.5 | 95 |
Channel for Training | Learning Rate | Batch Size | VGG16 | ResNet-34 |
---|---|---|---|---|
Accuracy (%) | Accuracy (%) | |||
R | 10−3 | 32 | 77.5 | 75 |
G | 80 | 77.5 | ||
B | 72.5 | 77.5 | ||
Grayscale | 70 | 72.5 | ||
RGB | 92.5 | 90 |
Dataset | Deep Learning Model | Accuracy (%) | Precision (%) | Recall (%) |
---|---|---|---|---|
Fluorescence Images | VGG16 | 97.5 | 97.6 | 97.5 |
ResNet-34 | 95.0 | 95.1 | 95.0 | |
White-Light Images | VGG16 | 92.5 | 91.7 | 92.5 |
ResNet-34 | 90.0 | 90.2 | 90.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, K.; Chen, B.; Li, Z.; Chen, D.; Liu, G.; Lin, H.; Zhang, B. Classification of Tea Leaves Based on Fluorescence Imaging and Convolutional Neural Networks. Sensors 2022, 22, 7764. https://doi.org/10.3390/s22207764
Wei K, Chen B, Li Z, Chen D, Liu G, Lin H, Zhang B. Classification of Tea Leaves Based on Fluorescence Imaging and Convolutional Neural Networks. Sensors. 2022; 22(20):7764. https://doi.org/10.3390/s22207764
Chicago/Turabian StyleWei, Kaihua, Bojian Chen, Zejian Li, Dongmei Chen, Guangyu Liu, Hongze Lin, and Baihua Zhang. 2022. "Classification of Tea Leaves Based on Fluorescence Imaging and Convolutional Neural Networks" Sensors 22, no. 20: 7764. https://doi.org/10.3390/s22207764
APA StyleWei, K., Chen, B., Li, Z., Chen, D., Liu, G., Lin, H., & Zhang, B. (2022). Classification of Tea Leaves Based on Fluorescence Imaging and Convolutional Neural Networks. Sensors, 22(20), 7764. https://doi.org/10.3390/s22207764