Broadband Acoustic Sensing with Optical Nanofiber Couplers Working at the Dispersion Turning Point
Abstract
:1. Introduction
2. Principle of Acoustic Sensing Using the ONC–Diaphragm Configuration
2.1. Working Principle of the ONC
2.2. Working Principle of the Diaphragm
3. Sensor Fabrication and Acoustic Measurement System
4. Experimental Results and Discussion
4.1. Sensing Performance for Different Sound Pressures
4.2. Broadband Acoustic Detection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teixeira, J.G.V.; Leite, I.T.; Silva, S.; Frazão, O. Advanced fiber-optic acoustic sensors. Photonic Sens. 2014, 4, 198–208. [Google Scholar] [CrossRef] [Green Version]
- Jo, W.; Kilic, O.; Digonnet, M.J.F. Highly Sensitive Phase-Front-Modulation Fiber Acoustic Sensor. J. Light. Technol. 2015, 33, 4377–4383. [Google Scholar] [CrossRef]
- Liu, L.; Lu, P.; Wang, S.; Fu, X.; Sun, Y.; Liu, D.; Zhang, J.; Xu, H.; Yao, Q. UV Adhesive Diaphragm-Based FPI Sensor for Very-Low-Frequency Acoustic Sensing. IEEE Photonics J. 2015, 8, 1–9. [Google Scholar] [CrossRef]
- Diaphragm, M.G.; Ma, J.; Xuan, H.; Ho, H.L.; Jin, W.; Yang, Y.; Fan, S. 2013 Fiber-Optic Fabry–Perot Acoustic Sensor with Multilayer Graphene Diaphragm. IEEE Photonics Technol. Lett. 2013, 25, 932–935. [Google Scholar]
- Wu, Y.; Yu, C.; Wu, F.; Li, C.; Zhou, J.; Gong, Y.; Rao, Y.; Chen, Y. A Highly Sensitive Fiber-Optic Microphone Based on Graphene Oxide Membrane. J. Light. Technol. 2017, 35, 4344–4349. [Google Scholar] [CrossRef]
- Chen, L.H.; Chan, C.C.; Yuan, W.; Goh, S.K.; Sun, J. High performance chitosan diaphragm-based fiber-optic acoustic sensor. Sens. Actuators A Phys. 2010, 163, 42–47. [Google Scholar] [CrossRef]
- Guo, F.; Fink, T.; Han, M.; Koester, L.; Turner, J.; Huang, J. High-sensitivity, high-frequency extrinsic Fabry–Perot interferometric fiber-tip sensor based on a thin silver diaphragm. Opt. Lett. 2012, 37, 1505–1507. [Google Scholar] [CrossRef] [PubMed]
- Dass, S.; Jha, R. Tapered Fiber Attached Nitrile Diaphragm-Based Acoustic Sensor. J. Light. Technol. 2017, 35, 5411–5417. [Google Scholar] [CrossRef]
- Wang, S.; Lu, P.; Zhang, L.; Liu, D.; Zhang, J. Optical Fiber Acoustic Sensor Based on Nonstandard Fused Coupler and Aluminum Foil. IEEE Sens. J. 2014, 14, 2293–2298. [Google Scholar] [CrossRef]
- Ni, W.; Lu, P.; Fu, X.; Wang, S.; Sun, Y.; Liu, D.; Zhang, J. Highly Sensitive Optical Fiber Curvature and Acoustic Sensor Based on Thin Core Ultralong Period Fiber Grating. IEEE Photonic J. 2017, 9, 1–9. [Google Scholar] [CrossRef]
- Liu, K.; Fan, J.; Luo, B.-B.; Zou, X.; Wu, D.; Zou, X.; Shi, S.; Guo, Y.; Zhao, M. Highly sensitive vibration sensor based on the dispersion turning point microfiber Mach-Zehnder interferometer. Opt. Express 2021, 29, 32983. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhang, T.; Liu, G.; Zhang, N.; Zhang, M.; Wei, L. Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference. Appl. Phys. Lett. 2016, 109, 101101. [Google Scholar] [CrossRef]
- Li, K.; Zhang, N.M.Y.; Zhang, N.; Zhang, T.; Liu, G.; Wei, L. Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers. J. Light. Technol. 2018, 36, 2409–2415. [Google Scholar] [CrossRef]
- Li, K.; Zhang, N.; Zhang, N.M.Y.; Liu, G.; Zhang, T.; Wei, L. Ultrasensitive measurement of gas refractive index using an optical nanofiber coupler. Opt. Lett. 2018, 43, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Li, K.; Wei, Y.; Hao, P.; Chi, M.; Liu, Y.; Wu, Y. Ultrasensitive label-free optical microfiber coupler biosensor for detection of cardiac troponin I based on interference turning point effect. Biosens. Bioelectron. 2018, 106, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Yan, X.; Gao, X.; Li, K.; Wang, J. Axial Strain Sensor Based on Microfiber Couplers Operating at the Dispersion Turning Point. IEEE Sens. J. 2022, 22, 4090–4095. [Google Scholar] [CrossRef]
- Aiadi, K.E.; Rehouma, F.; Bouanane, R. Theoretical analysis of the membrane parameters of the fiber optic microphone. J. Mater. Sci. Mater. Electron. 2006, 17, 293–295. [Google Scholar] [CrossRef]
- Buchade, P.B.; Shaligram, A.D. Simulation and experimental studies of inclined two fiber displacement sensor. Sens. Actuators A Phys. 2006, 128, 312–316. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Wen, J.; Wang, J.; Li, K. Broadband Acoustic Sensing with Optical Nanofiber Couplers Working at the Dispersion Turning Point. Sensors 2022, 22, 4940. https://doi.org/10.3390/s22134940
Gao X, Wen J, Wang J, Li K. Broadband Acoustic Sensing with Optical Nanofiber Couplers Working at the Dispersion Turning Point. Sensors. 2022; 22(13):4940. https://doi.org/10.3390/s22134940
Chicago/Turabian StyleGao, Xu, Jiajie Wen, Jiajia Wang, and Kaiwei Li. 2022. "Broadband Acoustic Sensing with Optical Nanofiber Couplers Working at the Dispersion Turning Point" Sensors 22, no. 13: 4940. https://doi.org/10.3390/s22134940
APA StyleGao, X., Wen, J., Wang, J., & Li, K. (2022). Broadband Acoustic Sensing with Optical Nanofiber Couplers Working at the Dispersion Turning Point. Sensors, 22(13), 4940. https://doi.org/10.3390/s22134940