A Novel Multi-Task Learning Model with PSAE Network for Simultaneous Estimation of Surface Quality and Tool Wear in Milling of Nickel-Based Superalloy Haynes 230
Abstract
:1. Introduction
2. The Proposed Multi-Task Learning Model
2.1. Multi-Task Network Structure with Parallel-Stacked Auto-Encoder
2.1.1. Standard Stacked Auto-Encoder
2.1.2. SDAE and SCAE
2.1.3. The Overall Framework of the MTL Model
2.2. Dynamic Weight Averaging
3. Experimental Setup
4. Results and Discussion
4.1. Correlation Analysis between Surface Roughness and Tool Wear
4.2. The Selection of Activation Function for AE
4.3. The Selection of Mother Wavelet for WPT
4.4. Performance Evaluation of the Proposed MTL Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
MTL | Multi-task learning |
PSAE | Parallel-stacked auto-encoder |
SDAE | Stacked denoising auto-encoder |
SCAE | Stacked contractive auto-encoder |
SELU | Scaled exponential linear unit |
DWA | Dynamic weight averaging |
PCC | Pearson correlation coefficient |
SVR | Support vector regression |
KELM | Kernel extreme learning machine |
Sa | Three-dimensional surface roughness |
VBmax | Maximum flank wear width |
STL | Single-task learning |
MAE | Mean absolute error |
RMSE | Root mean squared error |
References
- Wang, Y.; Wang, Y.; Zheng, L.; Zhou, J. Online Surface Roughness Prediction for Assembly Interfaces of Vertical Tail Integrating Tool Wear under Variable Cutting Parameters. Sensors 2022, 22, 1991. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Jiao, L.; Yan, P.; Liang, J.; Qiu, T.; Liu, Z.; Wang, X. Effect of machined surface texture on fretting crack nucleation under radial loading in conformal contact. Tribol. Int. 2021, 153, 106575. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, W.; Yan, P.; Qiu, T.; Gu, H.; Jiao, L.; Wang, X. Effect of milling surface topography and texture direction on fatigue behavior of ZK61M magnesium alloy. Int. J. Fatigue 2022, 156, 106669. [Google Scholar] [CrossRef]
- Kong, D.; Chen, Y.; Li, N. Gaussian process regression for tool wear prediction. Mech. Syst. Signal Process. 2018, 104, 556–574. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, S.; Wang, Z.; Wang, S.; Ma, C.; Yang, B. Surface roughness stabilization method based on digital twin-driven machining parameters self-adaption adjustment: A case study in five-axis machining. J. Intell. Manuf. 2020, 33, 943–952. [Google Scholar] [CrossRef]
- Lei, Y.; Li, N.; Guo, L.; Li, N.; Yan, T.; Lin, J. Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mech. Syst. Signal Process. 2018, 104, 799–834. [Google Scholar] [CrossRef]
- Huang, P.B.; Zhang, H.; Lin, Y. Development of a Grey online modeling surface roughness monitoring system in end milling operations. J. Intell. Manuf. 2019, 30, 1923–1936. [Google Scholar]
- Du, C.; Ho, C.L.; Kaminski, J. Prediction of product roughness, profile, and roundness using machine learning techniques for a hard turning process. Adv. Manuf. 2021, 9, 206–215. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Huang, Z.; Gao, R.X. Physics-informed meta learning for machining tool wear prediction. J. Manuf Syst. 2022, 62, 17–27. [Google Scholar] [CrossRef]
- Qiao, H.; Wang, T.; Wang, P.; Qiao, S.; Zhang, L. A Time-Distributed Spatiotemporal Feature Learning Method for Machine Health Monitoring with Multi-Sensor Time Series. Sensors 2018, 18, 2932. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Tian, X. An Effective PSO-LSSVM-Based Approach for Surface Roughness Prediction in High-Speed Precision Milling. IEEE Access 2021, 9, 80006–80014. [Google Scholar] [CrossRef]
- De Agustina, B.; Rubio, E.; Sebastián, M. Surface Roughness Model Based on Force Sensors for the Prediction of the Tool Wear. Sensors 2014, 14, 6393–6408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimenov, D.Y.; Bustillo, A.; Mikolajczyk, T. Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. J. Intell. Manuf. 2018, 29, 1045–1061. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.; Jiao, L.; Shi, X.; Wang, X.; Yan, P.; Li, Y. An intelligent prediction model of the tool wear based on machine learning in turning high strength steel. Proceedings of the Institution of Mechanical Engineers, Part B. J. Eng. Manuf. 2020, 234, 1580–1597. [Google Scholar] [CrossRef]
- Peng, R.; Liu, J.; Fu, X.; Liu, C.; Zhao, L. Application of machine vision method in tool wear monitoring. Int. J. Adv. Manuf. Technol. 2021, 116, 1357–1372. [Google Scholar] [CrossRef]
- Jain, A.K.; Lad, B.K. A novel integrated tool condition monitoring system. J. Intell. Manuf. 2019, 30, 1423–1436. [Google Scholar] [CrossRef]
- Kene, A.P.; Choudhury, S.K. Analytical modeling of tool health monitoring system using multiple sensor data fusion approach in hard machining. Measurement 2019, 145, 118–129. [Google Scholar] [CrossRef]
- Akhavan Niaki, F.; Mears, L. A comprehensive study on the effects of tool wear on surface roughness, dimensional integrity and residual stress in turning IN718 hard-to-machine alloy. J. Manuf. Process. 2017, 30, 268–280. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Z.; Gao, R.X.; Guo, Y. Heterogeneous data-driven hybrid machine learning for tool condition prognosis. CIRP Ann. 2019, 68, 455–458. [Google Scholar] [CrossRef]
- Rao, K.V.; Kumar, Y.P.; Singh, V.K.; Raju, L.S.; Ranganayakulu, J. Vibration-based tool condition monitoring in milling of Ti-6Al-4V using an optimization model of GM(1,N) and SVM. Int. J. Adv. Manuf. Technol. 2021, 115, 1931–1941. [Google Scholar] [CrossRef]
- Huang, P.; Lee, C. Estimation of Tool Wear and Surface Roughness Development Using Deep Learning and Sensors Fusion. Sensors 2021, 21, 5338. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lee, C. Deep Learning Approach for Vibration Signals Applications. Sensors 2021, 21, 3929. [Google Scholar] [CrossRef] [PubMed]
- Venkata Rao, K.; Murthy, B.S.N.; Mohan Rao, N. Prediction of cutting tool wear, surface roughness and vibration of work piece in boring of AISI 316 steel with artificial neural network. Measurement 2014, 51, 63–70. [Google Scholar] [CrossRef]
- Caruana, R. Multitask Learning. Mach. Learn. 1997, 28, 41–75. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Gu, Y. A multi-task learning framework for gas detection and concentration estimation. Neurocomputing 2020, 416, 28–37. [Google Scholar] [CrossRef]
- El-Sappagh, S.; Abuhmed, T.; Riazul Islam, S.M.; Kwak, K.S. Multimodal multitask deep learning model for Alzheimer’s disease progression detection based on time series data. Neurocomputing 2020, 412, 197–215. [Google Scholar] [CrossRef]
- Kim, T.S.; Sohn, S.Y. Multitask learning for health condition identification and remaining useful life prediction: Deep convolutional neural network approach. J. Intell. Manuf. 2021, 32, 2169–2179. [Google Scholar] [CrossRef]
- Liu, C.; Ni, J.; Wan, P. An accurate prediction method of multiple deterioration forms of tool based on multitask learning with low rank tensor constraint. J. Manuf. Syst. 2021, 58, 193–204. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, B.; Liu, K.; Shen, M.; Niu, M.; Han, L. A New Multitask Learning Method for Tool Wear Condition and Part Surface Quality Prediction. IEEE T Ind. Inform. 2021, 17, 6023–6033. [Google Scholar] [CrossRef]
- Song, W.; Li, W.; Hua, Z.; Zhu, F. A new deep auto-encoder using multiscale reconstruction errors and weight update correlation. Inf. Sci. 2021, 559, 130–152. [Google Scholar] [CrossRef]
- Korkmaz, M.E.; Gupta, M.K.; Li, Z.; Krolczyk, G.M.; Kuntoğlu, M.; Binali, R.; Yaşar, N.; Pimenov, D.Y. Indirect monitoring of machining characteristics via advanced sensor systems: A critical review. Int. J. Adv. Manuf. Technol. 2022, 120, 7043–7078. [Google Scholar] [CrossRef]
- Kuntoğlu, M.; Aslan, A.; Pimenov, D.Y.; Usca, Ü.A.; Salur, E.; Gupta, M.K.; Mikolajczyk, T.; Giasin, K.; Kapłonek, W.; Sharma, S. A Review of Indirect Tool Condition Monitoring Systems and Decision-Making Methods in Turning: Critical Analysis and Trends. Sensors 2021, 21, 108. [Google Scholar] [CrossRef] [PubMed]
- Pimenov, D.Y.; Bustillo, A.; Wojciechowski, S.; Sharma, V.S.; Gupta, M.K.; Kuntoğlu, M. Artificial intelligence systems for tool condition monitoring in machining: Analysis and critical review. J. Intell. Manuf. 2022, 1–43. [Google Scholar] [CrossRef]
- Yang, S.; Kong, X.; Wang, Q.; Li, Z.; Cheng, H. Deep multiple auto-encoder with attention mechanism network A dynamic domain adaptation method for rotary machine fault diagnosis under different working conditions. Knowl.-Based Syst. 2022, 249, 108639. [Google Scholar] [CrossRef]
- Shao, H.; Jiang, H.; Lin, Y.; Li, X. A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders. Mech. Syst. Signal Process. 2018, 102, 278–297. [Google Scholar] [CrossRef]
- Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-Normalizing Neural Networks. arXiv 2017, arXiv:1706.02515. [Google Scholar]
- Zhang, Y.; Li, X.; Gao, L.; Chen, W.; Li, P. Intelligent fault diagnosis of rotating machinery using a new ensemble deep auto-encoder method. Measurement 2020, 151, 107232. [Google Scholar] [CrossRef]
- Essien, A.; Giannetti, C. A Deep Learning Model for Smart Manufacturing Using Convolutional LSTM Neural Network Autoencoders. IEEE T Ind. Inform. 2020, 16, 6069–6078. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Johns, E.; Davison, A.J. End-to-End Multi-Task Learning with Attention. arXiv 2018, arXiv:1803.10704. [Google Scholar]
- Cerce, L.; Pusavec, F.; Kopac, J. Novel Spatial Cutting Tool-wear Measurement System Development and its Evaluation. Procedia CIRP 2015, 37, 170–175. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Z.; Yao, G.; Wang, B.; Ren, X. Investigation of surface topography and its deterioration resulting from tool wear evolution when dry turning of titanium alloy Ti-6Al-4V. Tribol. Int. 2019, 135, 130–142. [Google Scholar] [CrossRef]
- Vakharia, V.; Gupta, V.K.; Kankar, P.K. A multiscale permutation entropy based approach to select wavelet for fault diagnosis of ball bearings. J. Vib. Control 2015, 21, 3123–3131. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, B.; Sun, W.; Lei, Z. Tool wear condition monitoring based on a two-layer angle kernel extreme learning machine using sound sensor for milling process. J. Intell. Manuf. 2020, 33, 247–258. [Google Scholar] [CrossRef]
- Cheng, M.; Jiao, L.; Yan, P.; Feng, L.; Qiu, T.; Wang, X.; Zhang, B. Prediction of surface residual stress in end milling with Gaussian process regression. Measurement 2021, 178, 109333. [Google Scholar] [CrossRef]
- García Plaza, E.; Núñez López, P.J. Analysis of cutting force signals by wavelet packet transform for surface roughness monitoring in CNC turning. Mech. Syst. Signal Process. 2018, 98, 634–651. [Google Scholar] [CrossRef]
- Haidong, S.; Ziyang, D.; Junsheng, C.; Hongkai, J. Intelligent fault diagnosis among different rotating machines using novel stacked transfer auto-encoder optimized by PSO. ISA Trans. 2020, 105, 308–319. [Google Scholar] [CrossRef]
- Li, M.; Zhou, G.; Chen, A.; Yi, J.; Lu, C.; He, M.; Hu, Y. FWDGAN-based data augmentation for tomato leaf disease identification. Comput. Electron. Agric. 2022, 194, 106779. [Google Scholar] [CrossRef]
- Kulkarni, P.G.; Sahasrabudhe, A.D. Investigations on mother wavelet selection for health assessment of lathe bearings. Int. J. Adv. Manuf. Technol. 2016, 90, 3317–3331. [Google Scholar] [CrossRef]
- Hao, Y.; Zhu, L.; Yan, B.; Qin, S.; Cui, D.; Lu, H. Milling chatter detection with WPD and power entropy for Ti-6Al-4V thin-walled parts based on multi-source signals fusion. Mech. Syst. Signal Process. 2022, 177, 109225. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Ruder, S. An Overview of Multi-Task Learning in Deep Neural Networks. arXiv 2017, arXiv:1706.05098. [Google Scholar]
- Moliner-Heredia, R.; Peñarrocha-Alós, I.; Abellán-Nebot, J.V. Model-based tool condition prognosis using power consumption and scarce surface roughness measurements. J. Manuf. Syst. 2021, 61, 311–325. [Google Scholar] [CrossRef]
Parameters | Value Range | Determined Value |
---|---|---|
Optimization algorithm | (Adam, SGD, RMSprop) | Adam |
Batch size | (8, 16, 32) | 16 |
The number of epochs | (300, 400, 500, 600, 700, 800) | 500 |
Activation function of SDAE | (Sigmoid, Tanh, SoftPlus, ELU, RELU, SELU) | SELU |
Activation function of SCAE | (Sigmoid, Tanh, SoftPlus, ELU, RELU, SELU) | RELU |
Hidden layer nodes of SDAE | Hidden layer 1: (60, 50, 40), Hidden layer 2: (40, 30, 20), Hidden layer 3: (20, 10, 5) | (50, 30, 10) |
Hidden layer nodes of SCAE | Hidden layer 1: (60, 50, 40), Hidden layer 2: (40, 30, 20), Hidden layer 3: (20, 10, 5) | (50, 30, 10) |
Nodes of the dense layers for surface roughness prediction | Dense layer 1: (20, 10), Dense layer 2: (10, 5) | (20, 10) |
Nodes of the dense layers for tool wear prediction | Dense layer 1: (20, 10), Dense layer 2: (10, 5) | (10, 5) |
Nodes of the dense layer for cutting parameters | (10, 5) | 5 |
Elasticity Modulus (MPa) | Yield Strength (MPa) | Tensile Strength (MPa) | Poisson Ratio | Hardness (HV) |
---|---|---|---|---|
180 | 440 | 842 | 0.3 | 175 |
Elements | Ni | Cr | W | Mo | Mn | Si | Al |
---|---|---|---|---|---|---|---|
Content | 57 | 20–24 | 13–15 | 1.0–3.0 | 0.3–1.0 | 0.25–0.75 | 0.2–0.5 |
Number of Cutting Edges | Rake Angle | Clearance Angle | Corner Radius | Insert Thickness | Coating |
---|---|---|---|---|---|
2 | 10.5° | 15° | 0.8 mm | 3.6 mm | PVD |
Cutting Parameters | Abbreviation | Range | Value Interval | Units |
---|---|---|---|---|
Cutting speed | Vc | 50–90 | 10 | m/min |
Feed per tooth | fz | 0.05–0.1 | 0.01 | mm/tooth |
Cutting depth | ap | 0.2–0.4 | 0.05 | mm |
Tool wear | VBmax | 15–220 | / | µm |
Domain | Extracted Features | Expression |
---|---|---|
Time domain | Mean | |
Maximum (Max) and Minimum (Min) | ||
Peak-to-Peak (PP) | ||
Variance (Var) | ||
Skewness (Skew) | ||
Kurtosis (Kurt) | ||
Energy (E) | ||
Frequency domain | Amplitude of power spectrum (Am) | |
Mean of power spectrum (Me) | ||
Variance of power spectrum (VPS) | ||
Modified equivalent bandwidth (MEB) | ||
Frequency Band Energy (FBE) | ||
Mean Square Frequency (MSF) |
Type | Family | Order |
---|---|---|
Biorthogonal | Biorthogonal | bior1.3, bior2.2, bior3.3, bior4.4, bior5.5 |
Orthogonal | Daubechies | db3, db4, db6, db8, db10 |
Coiflet | coif1, coif2, coif3, coif4, coif5 | |
Symlet | sym2, sym3, sym4, sym6, sym8 |
Surface Roughness | Tool Wear | |||
---|---|---|---|---|
MAE | RMSE | MAE | RMSE | |
SVR | 0.159 | 0.198 | 7.83 | 12.5 |
KELM | 0.132 | 0.153 | 6.90 | 8.79 |
MTL_SDAE | 0.128 | 0.158 | 7.13 | 8.95 |
MTL_SCAE | 0.149 | 0.179 | 6.80 | 9.35 |
STL_PSAE | 0.128 | 0.169 | 6.90 | 9.81 |
The proposed MTL model | 0.110 | 0.132 | 4.17 | 5.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, M.; Jiao, L.; Yan, P.; Gu, H.; Sun, J.; Qiu, T.; Wang, X. A Novel Multi-Task Learning Model with PSAE Network for Simultaneous Estimation of Surface Quality and Tool Wear in Milling of Nickel-Based Superalloy Haynes 230. Sensors 2022, 22, 4943. https://doi.org/10.3390/s22134943
Cheng M, Jiao L, Yan P, Gu H, Sun J, Qiu T, Wang X. A Novel Multi-Task Learning Model with PSAE Network for Simultaneous Estimation of Surface Quality and Tool Wear in Milling of Nickel-Based Superalloy Haynes 230. Sensors. 2022; 22(13):4943. https://doi.org/10.3390/s22134943
Chicago/Turabian StyleCheng, Minghui, Li Jiao, Pei Yan, Huiqing Gu, Jie Sun, Tianyang Qiu, and Xibin Wang. 2022. "A Novel Multi-Task Learning Model with PSAE Network for Simultaneous Estimation of Surface Quality and Tool Wear in Milling of Nickel-Based Superalloy Haynes 230" Sensors 22, no. 13: 4943. https://doi.org/10.3390/s22134943
APA StyleCheng, M., Jiao, L., Yan, P., Gu, H., Sun, J., Qiu, T., & Wang, X. (2022). A Novel Multi-Task Learning Model with PSAE Network for Simultaneous Estimation of Surface Quality and Tool Wear in Milling of Nickel-Based Superalloy Haynes 230. Sensors, 22(13), 4943. https://doi.org/10.3390/s22134943