Structural Health Monitoring of Fatigue Cracks for Steel Bridges with Wireless Large-Area Strain Sensors
Abstract
:1. Introduction
2. Problem Statement
3. Methodology
3.1. The WLASS: Hardware
3.1.1. SEC for Large-Area Strain Sensing
3.1.2. The Data Acquisition System for WLASS
3.2. The WLASS: Algorithm for Fatigue Crack Monitoring
4. Numerical Validation for the GM-CWT Algorithm
5. Field Validation for Fatigue Crack Monitoring
5.1. Selection of a Fatigue Crack Location and the WLASS Installation
5.2. Data Collection and Processing
5.3. The GW-CWT Results
5.4. Fatigue Crack Monitoring Results
5.4.1. Automated Traffic Event Detection (Step 1) and Peak Identification (Step 2)
5.4.2. The Modified CGI for Fatigue Crack Monitoring (Step 3)
5.5. Laboratory Investigation for the Results of the Modified CGI (Step 3) of the Bridge
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taher, S.A.; Li, J.; Collins, W.; Bennett, C. UAV-Based Non-Contact Fatigue Crack Monitoring of Steel Structures. In Proceedings of the 12th International Workshop on Structural Health Monitoring (IWSHM), Stanford, CA, USA, 10–12 September 2019. [Google Scholar]
- Pakzad, S.N.; Fenves, G.L.; Kim, S.; Culler, D.E. Design and implementation of scalable wireless sensor network for structural monitoring. J. Infrastruct. Syst. 2008, 14, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Mottershead, J.E.; Link, M.; Friswell, M.I. The sensitivity method in finite element model updating: A tutorial. Mech. Syst. Signal Processing 2011, 25, 2275–2296. [Google Scholar] [CrossRef]
- Taher, S.A.; Li, J.; Fang, H. Earthquake input and state estimation for buildings using absolute floor accelerations. Earthq. Eng. Struct. Dyn. 2021, 50, 1020–1042. [Google Scholar] [CrossRef]
- Abe, M.; Fujino, Y.; Yanagihara, M.; Sato, M. Monitoring of hakucho suspension bridge by ambient vibration measurement. In Nondestructive Evaluation of Highways, Utilities, and Pipelines IV; SPIE: Newport Bean, CA, USA, 2000; Volume 3995, pp. 237–244. [Google Scholar]
- Wong, K.Y. Instrumentation and health monitoring of cable-supported bridges. Struct. Control. Health Monit. 2004, 11, 91–124. [Google Scholar] [CrossRef]
- Çelebi, M. Real-time seismic monitoring of the New Cape Girardeau Bridge and preliminary analyses of recorded data: An overview. Earthq. Spectra 2006, 22, 609–630. [Google Scholar] [CrossRef]
- Spencer, B.F., Jr.; Park, J.W.; Mechitov, K.A.; Jo, H.; Agha, G. Next generation wireless smart sensors toward sustainable civil infrastructure. Procedia Eng. 2017, 171, 5–13. [Google Scholar] [CrossRef]
- Rice, J.A.; Mechitov, K.; Sim, S.-H.; Nagayama, T.; Jang, S.; Kim, R.; Spencer, B.F., Jr.; Agha, G.; Fujino, Y. Flexible smart sensor framework for autonomous structural health monitoring. Smart Struct. Syst. 2010, 6, 423–438. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.; Jo, H.; Cho, S.; Mechitov, K.; Rice, J.A.; Sim, S.-H.; Jung, H.-J.; Yun, C.-B.; Spencer, B.F., Jr.; Agha, G. Structural health monitoring of a cable-stayed bridge using smart sensor technology: Deployment and evaluation. Smart Struct. Syst. 2010, 6, 439–459. [Google Scholar] [CrossRef] [Green Version]
- Hoang, T.; Fu, Y.; Mechitov, K.; Sánchez, F.G.; Kim, J.R.; Zhang, D.; Spencer, B.F., Jr. Autonomous end-to-end wireless monitoring system for railroad bridges. Adv. Bridge Eng. 2020, 1, 17. [Google Scholar] [CrossRef]
- Fu, Y.; Hoang, T.; Mechitov, K.; Kim, J.R.; Zhang, D.; Spencer, B.F., Jr. Sudden Event Monitoring of Civil Infrastructure Using Demand-Based Wireless Smart Sensors. Sensors 2018, 18, 4480. [Google Scholar] [CrossRef] [Green Version]
- Tikka, J.; Hedman, R.; Siljander, A. Strain gauge capabilities in crack detection. In Proceedings of the 4th International Workshop on Structural Health Monitoring, Stanford, CA, USA, 15–17 September 2003; DEStech Publications Inc.: Lancaster, PA, USA, 2003. [Google Scholar]
- Casas, J.R.; Cruz, P.J. Fiber optic sensors for bridge monitoring. J. Bridge Eng. 2003, 8, 362–373. [Google Scholar] [CrossRef] [Green Version]
- Li, H.-N.; Li, D.-S.; Song, G.-B. Recent applications of fiber optic sensors to health monitoring in civil engineering. Eng. Struct. 2004, 26, 1647–1657. [Google Scholar] [CrossRef]
- Tennyson, R.C.; Mufti, A.A.; Rizkalla, S.; Tadros, G.; Benmokrane, B. Structural health monitoring of innovative bridges in Canada with fiber optic sensors. Smart Mater. Struct. 2001, 10, 560. [Google Scholar] [CrossRef]
- Minardo, A.; Bernini, R.; Amato, L.; Zeni, L. Bridge monitoring using Brillouin fiber-optic sensors. IEEE Sens. J. 2011, 12, 145–150. [Google Scholar] [CrossRef]
- Kong, X.; Li, J.; Collins, W.; Bennett, C.; Laflamme, S.; Jo, H. A large-area strain sensing technology for monitoring fatigue cracks in steel bridges. Smart Mater. Struct. 2017, 26, 085024. [Google Scholar] [CrossRef]
- Kumar, V.; Acot, B.; Aygun, L.E.; Wagner, S.; Verma, N.; Sturm, J.; Glisic, B. Detecting, localizing, and quantifying damage using two-dimensional sensing sheet: Lab test and field application. J. Civ. Struct. Health Monit. 2021, 11, 1055–1075. [Google Scholar] [CrossRef]
- Laflamme, S.; Saleem, H.S.; Vasan, B.K.; Geiger, R.L.; Chen, D.; Kessler, M.R.; Rajan, K. Soft elastomeric capacitor network for strain sensing over large surfaces. IEEE/ASME Trans. Mechatron. 2013, 18, 1647–1654. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.-H.; Xu, J.; Jo, H.; Li, J.; Kong, X.; Collins, W.; Bennett, C.R.; Laflamme, S. Development of wireless sensor node hardware for large-area capacitive strain monitoring. Smart Mater. Struct. 2018, 28, 015002. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Glisic, B. Detection of steel fatigue cracks with strain sensing sheets based on large area electronics. Sensors 2015, 15, 8088–8108. [Google Scholar] [CrossRef] [Green Version]
- Aygun, L.E.; Kumar, V.; Weaver, C.; Gerber, M.; Wagner, S.; Verma, N.; Glisic, B.; Sturm, J.C. Large-area resistive strain sensing sheet for structural health monitoring. Sensors 2020, 20, 1386. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, I.; Huang, H. Monitoring fatigue crack growth and opening using antenna sensors. Smart Mater. Struct. 2010, 19, 055023. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wang, Y. Thermally Stable Wireless Patch Antenna Sensor for Strain and Crack Sensing. Sensors 2020, 20, 3835. [Google Scholar] [CrossRef]
- Ahmed, S.; Schumacher, T.; Thostenson, E.T.; McConnell, J. Performance evaluation of a carbon nanotube sensor for fatigue crack monitoring of metal structures. Sensors 2020, 20, 4383. [Google Scholar] [CrossRef]
- Chen, X.; Maxwell, L.; Li, F.; Kumar, A.; Ransom, E.; Topac, T.; Lee, S.; Haider, M.F.; Dardona, S.; Chang, F.-K. Design and integration of a wireless stretchable multimodal sensor network in a composite wing. Sensors 2020, 20, 2528. [Google Scholar] [CrossRef]
- Laflamme, S.; Ubertini, F.; Saleem, H.; D’Alessandro, A.; Downey, A.; Ceylan, H.; Materazzi, A.L. Dynamic characterization of a soft elastomeric capacitor for structural health monitoring. J. Struct. Eng. 2015, 141, 04014186. [Google Scholar] [CrossRef] [Green Version]
- Kharroub, S.; Laflamme, S.; Song, C.; Qiao, D.; Phares, B.; Li, J. Smart sensing skin for detection and localization of fatigue cracks. Smart Mater. Struct. 2015, 24, 065004. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Li, J.; Collins, W.; Bennett, C.R.; Laflamme, S.; Jo, H. Sensing distortion-induced fatigue cracks in steel bridges with capacitive skin sensor arrays. Smart Mater. Struct. 2018, 27, 115008. [Google Scholar] [CrossRef] [Green Version]
- Jajich, D.; Schultz, A.E. Measurement and analysis of distortion-induced fatigue in multigirder steel bridges. J. Bridge Eng. 2003, 8, 84–91. [Google Scholar] [CrossRef]
- Berglund, E.M.; Schultz, A.E. Girder differential deflection and distortion-induced fatigue in skewed steel bridges. J. Bridge Eng. 2006, 11, 169–177. [Google Scholar] [CrossRef]
- Mahmoud, H.N.; Miller, P.A. Distortion-induced fatigue crack growth. J. Bridge Eng. 2016, 21, 04015041. [Google Scholar] [CrossRef]
- Fu, Y.; Mechitov, K.; Hoang, T.; Kim, J.R.; Lee, D.H.; Spencer, B.F., Jr. Development and full-scale validation of high-fidelity data acquisition on a next-generation wireless smart sensor platform. Adv. Struct. Eng. 2019, 22, 3512–3533. [Google Scholar] [CrossRef]
- Jo, H.; Park, J.W.; Spencer, B.F.; Jung, H.J. Development of high-sensitivity wireless strain sensor for structural health monitoring. Smart Struct. Syst. 2013, 11, 477–496. [Google Scholar] [CrossRef]
- Lilly, J.M.; Olhede, S.C. Higher-order properties of analytic wavelets. IEEE Trans. Signal Processing 2008, 57, 146–160. [Google Scholar] [CrossRef] [Green Version]
- Lilly, J.M.; Olhede, S.C. Generalized Morse wavelets as a superfamily of analytic wavelets. IEEE Trans. Signal Processing 2012, 60, 6036–6041. [Google Scholar] [CrossRef] [Green Version]
- Olhede, S.C.; Walden, A.T. Generalized morse wavelets. IEEE Trans. Signal Processing 2002, 50, 2661–2670. [Google Scholar] [CrossRef] [Green Version]
- MATLAB; Version 9.10.0.1602886 (R2021a); The MathWorks Inc.: Natick, MA, USA, 2021.
Scenario | Amplitude | Frequency (Hz) | Time (s) | |||
---|---|---|---|---|---|---|
First Cycle | Second Cycle | First Cycle | Second Cycle | First Cycle | Second Cycle | |
S1 | 1 | 1 | 1 | 2 | 17.5 | 27.25 |
S2 | 2 | 2 | 1 | 2 | 17.5 | 27.25 |
S3 | 3 | 3 | 1 | 2 | 17.5 | 27.25 |
Scenario | Auto PSD | |||||||
---|---|---|---|---|---|---|---|---|
Amplitude | Frequency (Hz) | Time (s) | Amplitude | Frequency (Hz) | ||||
First Peak | Second Peak | First Peak | Second Peak | First Peak | Second Peak | Single Peak | Single Peak | |
S1 | 0.92 | 0.92 | 1.01 | 2.01 | 17.50 | 27.25 | 0.0093 | 0.88 |
S2 | 1.84 | 1.84 | 1.01 | 2.01 | 17.50 | 27.25 | 0.0372 | 0.88 |
S3 | 2.77 | 2.77 | 1.01 | 2.01 | 17.50 | 27.25 | 0.0839 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taher, S.A.; Li, J.; Jeong, J.-H.; Laflamme, S.; Jo, H.; Bennett, C.; Collins, W.N.; Downey, A.R.J. Structural Health Monitoring of Fatigue Cracks for Steel Bridges with Wireless Large-Area Strain Sensors. Sensors 2022, 22, 5076. https://doi.org/10.3390/s22145076
Taher SA, Li J, Jeong J-H, Laflamme S, Jo H, Bennett C, Collins WN, Downey ARJ. Structural Health Monitoring of Fatigue Cracks for Steel Bridges with Wireless Large-Area Strain Sensors. Sensors. 2022; 22(14):5076. https://doi.org/10.3390/s22145076
Chicago/Turabian StyleTaher, Sdiq Anwar, Jian Li, Jong-Hyun Jeong, Simon Laflamme, Hongki Jo, Caroline Bennett, William N. Collins, and Austin R. J. Downey. 2022. "Structural Health Monitoring of Fatigue Cracks for Steel Bridges with Wireless Large-Area Strain Sensors" Sensors 22, no. 14: 5076. https://doi.org/10.3390/s22145076
APA StyleTaher, S. A., Li, J., Jeong, J. -H., Laflamme, S., Jo, H., Bennett, C., Collins, W. N., & Downey, A. R. J. (2022). Structural Health Monitoring of Fatigue Cracks for Steel Bridges with Wireless Large-Area Strain Sensors. Sensors, 22(14), 5076. https://doi.org/10.3390/s22145076