Learning Damage Representations with Sequence-to-Sequence Models
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Signal Processing
3.2. Damage Representation Learning
Algorithm 1 Damage representation learning |
Input: Original signal Input: Number of iterations N, signal length L Output: Reconstructed signal Output: Parameter sets of a Seq2Seq model ,
|
3.3. Probability of Damage
4. Experiment
4.1. Project Overview
4.2. Training Details
4.3. Reconstruction Results
5. Discussion
5.1. Learning Curve
5.2. Damage Representation
5.3. Probability of Damage
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erazo, K.; Sen, D.; Nagarajaiah, S.; Sun, L. Vibration-based structural health monitoring under changing environmental conditions using Kalman filtering. Mech. Syst. Signal Process. 2019, 117, 1–15. [Google Scholar] [CrossRef]
- Zhao, R.; Yan, R.; Chen, Z.; Mao, K.; Wang, P.; Gao, R.X. Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process. 2019, 115, 213–237. [Google Scholar] [CrossRef]
- Kaveh, A.; Dadras, A. Structural damage identification using an enhanced thermal exchange optimization algorithm. Eng. Optim. 2018, 50, 430–451. [Google Scholar] [CrossRef]
- Kong, X.; Li, J. Vision-based fatigue crack detection of steel structures using video feature tracking. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 783–799. [Google Scholar] [CrossRef]
- Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep learning-based crack damage detection using convolutional neural networks. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Cha, Y.J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 731–747. [Google Scholar] [CrossRef]
- Gao, Y.; Mosalam, K.M. Deep transfer learning for image-based structural damage recognition. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 748–768. [Google Scholar] [CrossRef]
- Sankarasrinivasan, S.; Balasubramanian, E.; Karthik, K.; Chandrasekar, U.; Gupta, R. Health monitoring of civil structures with integrated UAV and image processing system. Procedia Comput. Sci. 2015, 54, 508–515. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, K.; Gholami, H.; Vidyadharan, A.; Choudhary, A.; Agrawal, A. Crack damage detection in unmanned aerial vehicle images of civil infrastructure using pre-trained deep learning model. Int. J. Traffic Transp. Eng. 2018, 8, 1–14. [Google Scholar]
- Rafiei, M.H.; Adeli, H. A novel unsupervised deep learning model for global and local health condition assessment of structures. Eng. Struct. 2018, 156, 598–607. [Google Scholar] [CrossRef]
- Wang, Z.; Cha, Y.J. Automated damage-sensitive feature extraction using unsupervised convolutional neural networks. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018, International Society for Optics and Photonics, Denver, CO, USA, 5–8 March 2018; Volume 10598, p. 105981J. [Google Scholar]
- Wang, Z.; Cha, Y.J. Unsupervised deep learning approach using a deep auto-encoder with a one-class support vector machine to detect damage. Struct. Health Monit. 2021, 20, 406–425. [Google Scholar] [CrossRef]
- Avci, O.; Abdeljaber, O.; Kiranyaz, S.; Hussein, M.; Inman, D.J. Wireless and real-time structural damage detection: A novel decentralized method for wireless sensor networks. J. Sound Vib. 2018, 424, 158–172. [Google Scholar] [CrossRef]
- Abdeljaber, O.; Avci, O.; Kiranyaz, M.S.; Boashash, B.; Sodano, H.; Inman, D.J. 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data. Neurocomputing 2018, 275, 1308–1317. [Google Scholar] [CrossRef]
- Li, S.; Sun, L. Detectability of bridge-structural damage based on fiber-optic sensing through deep-convolutional neural networks. J. Bridge Eng. 2020, 25, 04020012. [Google Scholar] [CrossRef]
- Ni, F.; Zhang, J.; Noori, M.N. Deep learning for data anomaly detection and data compression of a long-span suspension bridge. Comput.-Aided Civ. Infrastruct. Eng. 2020, 35, 685–700. [Google Scholar] [CrossRef]
- Li, J.; Huang, Y.; Asadollahi, P. Sparse Bayesian learning with model reduction for probabilistic structural damage detection with limited measurements. Eng. Struct. 2021, 247, 113183. [Google Scholar] [CrossRef]
- Yang, Q.; Shen, D.; Du, W.; Li, W. A Deep Learning-Based Framework for Damage Detection With Time Series. IEEE Access 2021, 9, 66570–66586. [Google Scholar] [CrossRef]
- Sony, S.; Gamage, S.; Sadhu, A.; Samarabandu, J. Vibration-based multiclass damage detection and localization using long short-term memory networks. In Structures; Elsevier: Amsterdam, The Netherlands, 2022; Volume 35, pp. 436–451. [Google Scholar]
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2014; pp. 3104–3112. [Google Scholar]
- Pei, S.; van de Lindt, J.W.; Barbosa, A.R.; Berman, J.W.; McDonnell, E.; Daniel Dolan, J.; Blomgren, H.E.; Zimmerman, R.B.; Huang, D.; Wichman, S. Experimental seismic response of a resilient 2-story mass-timber building with post-tensioned rocking walls. J. Struct. Eng. 2019, 145, 04019120. [Google Scholar] [CrossRef]
- Pei, S.; van de Lindt, J.W.; Barbosa, A.R.; Daniel Dolan, J.; Berman, J.W. Two-Story Wood Building Test. Shake Table Test of a Two-Story Mass Timber Building with Post-Tensioned Rocking Walls; DesignSafe-CI: Thessaloniki, Greece, 2019. [Google Scholar] [CrossRef]
- Mugabo, I.; Barbosa, A.R.; Sinha, A.; Higgins, C.; Riggio, M.; Pei, S.; van de Lindt, J.W.; Berman, J.W. System Identification of UCSD-NHERI Shake-Table Test of Two-Story Structure with Cross-Laminated Timber Rocking Walls. J. Struct. Eng. 2021, 147, 04021018. [Google Scholar] [CrossRef]
- Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef] [PubMed]
White Noise Test | WN1 | WN2 | WN11 | WN17 | WN21 |
---|---|---|---|---|---|
Excitation intensity | NA | SLE | DBE | MCE | MCE |
Duration (s) | 295.5 | 267.0 | 176.0 | 160.5 | 166.0 |
Length of signal | 70,920 | 64,080 | 42,240 | 38,520 | 39,840 |
Length of a segment | 500 | 500 | 500 | 500 | 500 |
Number of segments | 142 | 129 | 85 | 78 | 80 |
Dataset size | 3976 | 3612 | 2380 | 2184 | 2240 |
Model | Seq2Seq | Baseline |
---|---|---|
Architecture | {RNN, LSTM, GRU} | MLP |
Weight initialization | ||
Hidden size | 128 | |
Optimizer | SGD with momentum | |
Learning rate | 0.1 | |
Batch size | 256 | |
Number of epoch | 1000 | 10,000 |
Model Sensors | Seq2Seq | Baseline | ||||||
---|---|---|---|---|---|---|---|---|
SLS | DBE | MCE | MCE | SLS | DBE | MCE | MCE | |
1-101 | 0.074 | 0.276 | 0.367 | 0.578 | 0.222 | 0.366 | 0.390 | 0.513 |
1-102 | 0.061 | 0.226 | 0.279 | 0.500 | 0.238 | 0.384 | 0.403 | 0.571 |
1-401 | 0.050 | 0.179 | 0.234 | 0.380 | 0.220 | 0.386 | 0.407 | 0.562 |
1-402 | 0.048 | 0.196 | 0.240 | 0.421 | 0.217 | 0.357 | 0.410 | 0.574 |
1-103 | 0.074 | 0.239 | 0.318 | 0.516 | 0.197 | 0.359 | 0.390 | 0.495 |
1-301 | 0.084 | 0.263 | 0.375 | 0.526 | 0.183 | 0.339 | 0.358 | 0.483 |
1-403 | 0.057 | 0.211 | 0.286 | 0.423 | 0.200 | 0.391 | 0.405 | 0.562 |
R-101 | 0.078 | 0.275 | 0.304 | 0.474 | 0.203 | 0.328 | 0.389 | 0.485 |
R-102 | 0.060 | 0.219 | 0.265 | 0.391 | 0.204 | 0.335 | 0.402 | 0.538 |
R-401 | 0.074 | 0.243 | 0.283 | 0.425 | 0.202 | 0.318 | 0.391 | 0.514 |
R-402 | 0.076 | 0.236 | 0.267 | 0.456 | 0.193 | 0.320 | 0.370 | 0.518 |
R-103 | 0.052 | 0.225 | 0.244 | 0.399 | 0.180 | 0.371 | 0.377 | 0.531 |
R-313 | 0.055 | 0.202 | 0.239 | 0.371 | 0.189 | 0.354 | 0.401 | 0.510 |
R-403 | 0.071 | 0.243 | 0.259 | 0.406 | 0.188 | 0.338 | 0.368 | 0.501 |
White Noise Test | Natural Frequency [23] | Degardation of Natural Frequency | Degradation of Stiffness |
---|---|---|---|
WN1 | 1.39 Hz | NA | NA |
WN2 | 1.22 Hz | 12.2% | 25.9% |
WN11 | 1.18 Hz | 15.1% | 32.5% |
WN17 | 1.11 Hz | 20.1% | 44.2% |
WN19 | 1.10 Hz | 20.9% | 46.2% |
WN21 | 1.04 Hz | 25.2% | 56.8% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Shen, D. Learning Damage Representations with Sequence-to-Sequence Models. Sensors 2022, 22, 452. https://doi.org/10.3390/s22020452
Yang Q, Shen D. Learning Damage Representations with Sequence-to-Sequence Models. Sensors. 2022; 22(2):452. https://doi.org/10.3390/s22020452
Chicago/Turabian StyleYang, Qun, and Dejian Shen. 2022. "Learning Damage Representations with Sequence-to-Sequence Models" Sensors 22, no. 2: 452. https://doi.org/10.3390/s22020452
APA StyleYang, Q., & Shen, D. (2022). Learning Damage Representations with Sequence-to-Sequence Models. Sensors, 22(2), 452. https://doi.org/10.3390/s22020452