Light Scattering by a Subwavelength Plasmonic Array: Anisotropic Model
Abstract
:1. Introduction
2. BEM Calculation
3. Anisotropic Layer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zayats, A.V.; Smolyaninov, I.I.; Maradudin, A.A. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005, 408, 131–314. [Google Scholar] [CrossRef]
- Fan, X.; Zheng, W.; Singh, D.J. Light scattering and surface plasmons on small spherical particles. Light Sci. Appl. 2014, 3, e179. [Google Scholar] [CrossRef] [Green Version]
- Chau, Y.F.; Yeh, H.H. A comparative study of solid-silver and silver-shell nanodimers on surface plasmon resonances. J. Nanoparticle Res. 2011, 13, 637–644. [Google Scholar] [CrossRef]
- Chou Chau, Y.F.; Chou Chao, C.T.; Huang, H.J.; Kooh, M.R.R.; Kumara, N.; Lim, C.M.; Chiang, H.P. Perfect dual-band absorber based on plasmonic effect with the cross-hair/nanorod combination. Nanomaterials 2020, 10, 493. [Google Scholar] [CrossRef] [Green Version]
- Gupta, B.D.; Kant, R. Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures. Opt. Laser Technol. 2018, 101, 144–161. [Google Scholar] [CrossRef]
- Xu, Y.; Bai, P.; Zhou, X.; Akimov, Y.; Png, C.E.; Ang, L.K.; Knoll, W.; Wu, L. Optical refractive index sensors with plasmonic and photonic structures: Promising and inconvenient truth. Adv. Opt. Mater. 2019, 7, 1801433. [Google Scholar] [CrossRef]
- Zhao, Y.; Tong, R.j.; Xia, F.; Peng, Y. Current status of optical fiber biosensor based on surface plasmon resonance. Biosens. Bioelectron. 2019, 142, 111505. [Google Scholar] [CrossRef] [PubMed]
- Peralta, E.A.; Soong, K.; England, R.J.; Colby, E.R.; Wu, Z.; Montazeri, B.; McGuinness, C.; McNeur, J.; Leedle, K.J.; Walz, D.; et al. Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature 2013, 503, 91–94. [Google Scholar] [CrossRef]
- Rovey, J.L.; Friz, P.D.; Hu, C.; Glascock, M.S.; Yang, X. Plasmonic force space propulsion. J. Spacecr. Rocket. 2015, 52, 1163–1168. [Google Scholar] [CrossRef]
- Prodan, E.; Radloff, C.; Halas, N.J.; Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 2003, 302, 419–422. [Google Scholar] [CrossRef]
- Chau, Y.F.; Jheng, C.Y.; Joe, S.F.; Wang, S.F.; Yang, W.; Jheng, S.C.; Sun, Y.S.; Chu, Y.; Wei, J.H. Structurally and materially sensitive hybrid surface plasmon modes in periodic silver-shell nanopearl and its dimer arrays. J. Nanoparticle Res. 2013, 15, 1–13. [Google Scholar] [CrossRef]
- Ho, Y.Z.; Chen, W.T.; Huang, Y.W.; Wu, P.C.; Tseng, M.L.; Wang, Y.T.; Chau, Y.F.; Tsai, D.P. Tunable plasmonic resonance arising from broken-symmetric silver nanobeads with dielectric cores. J. Opt. 2012, 14, 114010. [Google Scholar] [CrossRef]
- Bogaerts, W.; Chrostowski, L. Silicon photonics circuit design: Methods, tools and challenges. Laser Photonics Rev. 2018, 12, 1700237. [Google Scholar] [CrossRef]
- Frumin, L.; Shapiro, D. Sensitivity enhancement of plasmonic grating in the local field. Opt. Express 2020, 28, 26143–26150. [Google Scholar] [CrossRef] [PubMed]
- Frumin, L.; Nemykin, A.; Perminov, S.; Shapiro, D. Plasmons excited by an evanescent wave in a periodic array of nanowires. J. Opt. 2013, 15, 085002. [Google Scholar] [CrossRef] [Green Version]
- Nemykin, A.; Perminov, S.; Frumin, L.; Shapiro, D. Excitation of a plasmon resonance in metal cylinders by an evanescent wave. Quantum Electron. 2015, 45, 240. [Google Scholar] [CrossRef]
- Palik, E.D. (Ed.) Handbook of Optical Constants of Solids; Academic Press: London, UK, 1998; Volume 1–2. [Google Scholar]
- Bohren, C.F.; Huffman, D.R. (Eds.) Absorption and Scattering of Light by Small Particles; Wiley: Weinheim, Germany, 2004. [Google Scholar]
- Zymovetz, S.V.; Geshev, P.I. Boundary Integral Equation Method for Analysis of Light Scattering by 2D Nanoparticles. Tech. Phys. 2006, 51, 291–296. [Google Scholar] [CrossRef]
- Kotkin, G.L. On excitation of surface wave. Phys. Met. Metallogr. 1966, 21, 479–480. [Google Scholar]
- Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer: Berlin, Germany, 1988. [Google Scholar]
- Shalabney, A.; Abdulhalim, I. Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors. Sens. Actuators A Phys. 2010, 159, 24–32. [Google Scholar] [CrossRef]
- Terentyev, V.S.; Simonov, V.A. Spectral Characteristics of an Oblique-Incidence Reflection Interferometer as a Refractive Index Sensor. Opt. Spectrosc. 2021, 129, 276–282. [Google Scholar] [CrossRef]
- Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic metamaterials. Nat. Photonics 2013, 7, 948–957. [Google Scholar] [CrossRef]
- Cortes, C.L.; Newman, W.; Molesky, S.; Jacob, Z. Quantum nanophotonics using hyperbolic metamaterials. J. Opt. 2012, 14, 063001. [Google Scholar] [CrossRef] [Green Version]
- Bronnikov, K.; Arriaga, J.; Krokhin, A.; Drachev, V.P. Sub-Diffraction-Limit Imaging System with two Interfacing Hyperbolic Metamaterials. Phys. Rev. Appl. 2021, 16, 044054. [Google Scholar] [CrossRef]
Parameter | Circle | Vertical Ellipse | Horizontal Ellipse |
---|---|---|---|
Isotropic/anisotropic layer thickness, nm | 55/40 | 9.2/103 | 24/19 |
Isotropic permittivity | |||
Longitudinal permittivity | |||
Transversal permittivity | |||
Isotropic/anisotropic layer distortion functional | 65.3/4.7 | 705/0.67 | 149/11.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemykin, A.; Frumin, L.; Shapiro, D. Light Scattering by a Subwavelength Plasmonic Array: Anisotropic Model. Sensors 2022, 22, 449. https://doi.org/10.3390/s22020449
Nemykin A, Frumin L, Shapiro D. Light Scattering by a Subwavelength Plasmonic Array: Anisotropic Model. Sensors. 2022; 22(2):449. https://doi.org/10.3390/s22020449
Chicago/Turabian StyleNemykin, Anton, Leonid Frumin, and David Shapiro. 2022. "Light Scattering by a Subwavelength Plasmonic Array: Anisotropic Model" Sensors 22, no. 2: 449. https://doi.org/10.3390/s22020449
APA StyleNemykin, A., Frumin, L., & Shapiro, D. (2022). Light Scattering by a Subwavelength Plasmonic Array: Anisotropic Model. Sensors, 22(2), 449. https://doi.org/10.3390/s22020449