Sidescan Only Neural Bathymetry from Large-Scale Survey
Abstract
:1. Introduction
2. Methods
2.1. Sidescan Sonar Overview
2.2. Neural SFS
2.2.1. Implicit Neural Representation
2.2.2. Sidescan Scattering Model
2.2.3. Nadir Model
2.2.4. Optimization
2.2.5. Assessment
3. Experiments
3.1. Data and Surveyed Area
3.2. Training Details
4. Results
5. Discussion
5.1. External Bathymetric Measurement
5.2. Implicit Neural Representations: Sirens
5.3. Shadows
5.4. Noise in SSS Data
5.5. SSS Resolution
5.6. Refraction
5.7. Potential Applications: Small AUV Bathymetry
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUV | Autonomous Underwater Vehicle |
DEM | Digital Elevation Model |
FLD | Forward Lateral Down |
GNSS | Global Navigation Satellite System |
INR | Implicit Neural Representations |
MBES | Multi-beam Echo Sounder |
MLP | Multi-layer Perceptron |
NeRF | Neural Radiance Fields |
probability distribution function | |
ReLU | Rectified Linear Unit |
RTK | Real-Time Kinematic |
SBES | Single-beam Echo Sounder |
SFS | Shape from Shading |
SIREN | Sinusoidal Representation Network |
SLAM | Simultaneous Localization and Mapping |
SSS | Sidescan Sonar |
SVP | Sound Velocity Profile |
USV | Unmanned Surface Vehicle |
UUV | Unmanned Underwater Vehicle |
XTF | eXtended Triton Format |
Appendix A
Appendix B
References
- Horn, B.K. Obtaining shape from shading information. The Psychology of Computer Vision; McGraw-Hill: New York, NY, USA, 1975; pp. 115–155. [Google Scholar]
- Anderson, J.T.; Van Holliday, D.; Kloser, R.; Reid, D.G.; Simard, Y. Acoustic seabed classification: Current practice and future directions. ICES J. Mar. Sci. 2008, 65, 1004–1011. [Google Scholar] [CrossRef]
- Coiras, E.; Petillot, Y.; Lane, D.M. An expectation-maximization framework for the estimation of bathymetry from side-scan sonar images. In Proceedings of the IEEE Europe OCEANS Conference, Brest, France, 20–23 June 2005; pp. 261–264. [Google Scholar]
- Coiras, E.; Petillot, Y.; Lane, D.M. Multiresolution 3-D Reconstruction From Side-Scan Sonar Images. IEEE Trans. Image Process. 2007, 16, 382–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, R.E.; Sæbø, T.O.; Callow, H.J.; Hagen, P.E. Interferometric synthetic aperture sonar in pipeline inspection. In Proceedings of the OCEANS’10 IEEE, Sydney, Australia, 24–28 May 2010; pp. 1–10. [Google Scholar]
- Brisson, L.N.; Wolfe, D.A.; Staley, M. Interferometric swath bathymetry for large scale shallow water hydrographic surveys. In Proceedings of the Canadian Hydrographic Conference, St. John’s, NL, Canada, 14–17 April 2014; pp. 1–18. [Google Scholar]
- Fezzani, R.; Zerr, B.; Mansour, A.; Legris, M.; Vrignaud, C. Fusion of swath bathymetric data: Application to AUV rapid environment assessment. IEEE J. Ocean. Eng. 2018, 44, 111–120. [Google Scholar] [CrossRef]
- Langer, D.; Hebert, M. Building qualitative elevation maps from side scan sonar data for autonomous underwater navigation. In Proceedings of the IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 9–11 April 1991; Volume 3, pp. 2478–2483. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Pai, S. Improvement Of Bathymetric Data Bases By Shape From Shading Technique Using Side-scan Sonar Images. In Proceedings of the IEEE OCEANS Conference on Ocean Technologies and Opportunities in the Pacific for the 90s, Honolulu, HI, USA, 1–3 October 1991; Volume 1, pp. 320–324. [Google Scholar] [CrossRef]
- Johnson, A.E.; Hebert, M. Seafloor map generation for autonomous underwater vehicle navigation. Autom. Robot. 1996, 3, 145–168. [Google Scholar]
- Xie, Y.; Bore, N.; Folkesson, J. High-Resolution Bathymetric Reconstruction From Sidescan Sonar with Deep Neural Networks. arXiv 2021, arXiv:2206.07810. [Google Scholar]
- Bore, N.; Folkesson, J. Neural Shape-from-Shading for Survey-Scale Self-Consistent Bathymetry from Sidescan. arXiv 2021, arXiv:2206.09276. [Google Scholar]
- Xie, Y.; Bore, N.; Folkesson, J. Neural Network Normal Estimation and Bathymetry Reconstruction from Sidescan. arXiv 2021, arXiv:2206.07819. [Google Scholar]
- Shang, X.; Zhao, J.; Zhang, H.; Wang, A.; Wang, X. Integration of SSS-based Reconstructed Results and Bathymetric Data to Obtain High-resolution and High-accuracy Underwater Topography. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1505005. [Google Scholar] [CrossRef]
- Durá, E.; Bell, J.; Lane, D. Reconstruction of textured seafloors from side-scan sonar images. IEEE Proc. Radar, Sonar Navig. 2004, 151, 114–126. [Google Scholar] [CrossRef]
- Zhao, J.; Shang, X.; Zhang, H. Reconstructing seabed topography from side-scan sonar images with self-constraint. Remote Sens. 2018, 10, 201. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Bore, N.; Folkesson, J. Towards Differentiable Rendering for Sidescan Sonar Imagery. arXiv 2022, arXiv:2206.07821. [Google Scholar]
- Mescheder, L.; Oechsle, M.; Niemeyer, M.; Nowozin, S.; Geiger, A. Occupancy Networks: Learning 3D Reconstruction in Function Space. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 4455–4465. [Google Scholar] [CrossRef] [Green Version]
- Park, J.J.; Florence, P.; Straub, J.; Newcombe, R.; Lovegrove, S. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 165–174. [Google Scholar] [CrossRef] [Green Version]
- Sitzmann, V.; Zollhoefer, M.; Wetzstein, G. Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations. In Proceedings of the NeurIPS, Vancouver, BC, Canada, 8–14 December 2019; Volume 32. [Google Scholar]
- Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. Nerf: Representing scenes as neural radiance fields for view synthesis. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; pp. 405–421. [Google Scholar]
- Sitzmann, V.; Martel, J.N.; Bergman, A.W.; Lindell, D.B.; Wetzstein, G. Implicit Neural Representations with Periodic Activation Functions. In Proceedings of the NeurIPS, Online, 6–12 December 2020. [Google Scholar]
- PING Nearshore Survey Vessel. Available online: https://www.mmt.se/fleet/ping/ (accessed on 31 May 2022).
- Bore, N. AUVlib. Available online: https://github.com/nilsbore/auvlib (accessed on 31 May 2022).
- Nguyen, H.V.; Bai, L. Cosine similarity metric learning for face verification. In Proceedings of the Asian Conference on Computer Vision, Queenstown, New Zealand, 8–12 November 2010; pp. 709–720. [Google Scholar]
- Folkesson, J.; Chang, H.; Bore, N. Lambert’s Cosine Law and Sidescan Sonar Modeling. In Proceedings of the 2020 IEEE/OES Autonomous Underwater Vehicles Symposium, St. John’s, NL, Canada, 30 September–2 October 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Mahmood, A.; Chitre, M. Modeling colored impulsive noise by Markov chains and alpha-stable processes. In Proceedings of the OCEANS 2015—Genova, Genova, Italy, 18–21 May 2015; pp. 1–7. [Google Scholar]
- Zhang, X.; Ying, W.; Yang, B. Parameter Estimation for Class a Modeled Ocean Ambient Noise; Bandung Institute of Technology: Bandung, Indonesia, 2018. [Google Scholar]
Extra Bathymetric Data Required | Extra Bathymetric Data Not Required | Lambertian Scattering Model | Data-Driven Scattering Model |
---|---|---|---|
[8,9,10,11,12,13,14] | [3,4,15,16,17] | [3,4,8,9,10,12,14,15,16,17] | [11,13] |
Inputs | Description |
---|---|
sidescan origin at ping i | |
sidescan rotation matrix at ping i | |
intensity at ping i and time bin n | |
Outputs | |
bathymetry height map | |
albedo map | |
beam profile | |
per-survey line gain |
Property | Value |
---|---|
Bathymetry resolution | 0.5 m |
Sidescan type | Edgetech 4200 MP |
Sidescan range | 0.035 s ⇒~50 m |
Sidescan frequency | 900 kHz |
Composition | ~70% Sedimentary rock, 30% sand |
Mean altitude | 17 m |
Survey area | ~350 m × 300 m |
Sidescan pings | ~93,000 |
Max (m) | Min (m) | Mean (m) | Abs. Mean (m) | STD (± m) | |
---|---|---|---|---|---|
ours | 2.458 | −0.955 | 0.097 | 0.195 | 0.228 |
[12] | 1.166 | −1.244 | −0.006 | 0.028 | 0.065 |
[16] | 0.47 | −0.54 | 0.00 | - | 0.12 |
MAE (m) | Cosine Similarity | |
---|---|---|
0.195 | 0.817 | |
0.214 | 0.814 | |
0.605 | 0.799 | |
0.893 | 0.791 | |
0.556 | 0.800 | |
0.207 | 0.815 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Bore, N.; Folkesson, J. Sidescan Only Neural Bathymetry from Large-Scale Survey. Sensors 2022, 22, 5092. https://doi.org/10.3390/s22145092
Xie Y, Bore N, Folkesson J. Sidescan Only Neural Bathymetry from Large-Scale Survey. Sensors. 2022; 22(14):5092. https://doi.org/10.3390/s22145092
Chicago/Turabian StyleXie, Yiping, Nils Bore, and John Folkesson. 2022. "Sidescan Only Neural Bathymetry from Large-Scale Survey" Sensors 22, no. 14: 5092. https://doi.org/10.3390/s22145092
APA StyleXie, Y., Bore, N., & Folkesson, J. (2022). Sidescan Only Neural Bathymetry from Large-Scale Survey. Sensors, 22(14), 5092. https://doi.org/10.3390/s22145092