Defect Detection Method of Carbon Fiber Sucker Rod Based on Multi-Sensor Information Fusion and DBN Model
Abstract
:1. Introduction
2. Experimental Setup and Testing
2.1. Water-Immersed Ultrasonic Detection System
2.2. Experimental Testing Based on Ultrasonic Array
3. Multi-Sensor Information Fusion into Defect Images
4. Feature Extraction of Defect Images
4.1. An Image Enhancement Method Combining Bilateral Filtering and Laplace Operator
4.2. Defect Image Segmentation and Invalid Area Elimination
4.3. A Feature Extraction Method Combining Geometric Features with Texture Features
4.3.1. Extraction of Geometric Features of Defect Images
4.3.2. Extraction of Texture Features of Defect Images
5. DBN-Based Defect Identification Model
6. Conclusions
- (1)
- According to the characteristics of irregular interlayer interfaces in carbon fiber sucker rods and the requirements for online inspection, a water-immersed ultrasonic detection system with 32 probes was specially designed to perform ultrasonic inspections in different radial and axial positions, in which the sucker rod can move freely underwater with the fabrication process and introduce a sound wave at any desired angle without contacting the probes.
- (2)
- A multi-sensor information fusion method was proposed to integrate amplitudes and times-of-flight of the received ultrasonic pulse-echo signals with the spatial angle information of each probe into defect images with obvious defects including small cracks, transverse cracks, holes, and chapped cracks. From this, many common image recognition methods can be used to identify the defect types from the defect images.
- (3)
- A feature extraction method combining geometric features with texture features was proposed to extract three geometric features and two texture features characterizing the four types of defects from the defect images. Then, the features can be used to construct the model identifying the defects.
- (4)
- A DBN-based defect identification model was constructed and trained to identify the four types of defects of the carbon fiber rods. The testing results show that the defect identification accuracy of the proposed method is 95.11%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, Y.; Gu, X.; Chang, D. Application status and research direction of carbon fiber continuous sucker rod. China Pet. Mach. 2005, 33, 76–78. [Google Scholar]
- Sharma, M.; Gao, S.; Mäder, E.; Sharma, H.; Wei, L.Y.; Bijwe, J. Carbon fiber surfaces and composite interphases. Compos. Sci. Technol. 2014, 102, 35–50. [Google Scholar] [CrossRef]
- Kazys, R.; Mazeika, L.; Zukauskas, E. Investigation of accurate imaging of the defects in composite materials using ultrasonic air-coupled technique. Int. J. Mater. Prod. Technol. 2011, 41, 105–116. [Google Scholar] [CrossRef]
- Katunin, A.; Dragan, K.; Nowak, T.; Chalimoniuk, M. Quality Control Approach for the Detection of Internal Lower Density Areas in Composite Disks in Industrial Conditions Based on a Combination of NDT Techniques. Sensors 2021, 21, 7174. [Google Scholar] [CrossRef]
- Tsangouri, E.; Aggelis, D.G. A review of acoustic emission as indicator of reinforcement effectiveness in concrete and cementitious composites. Constr. Build. Mater. 2019, 224, 198–205. [Google Scholar] [CrossRef]
- Strantza, M.; Aggelis, D.G.; De Baere, D.; Guillaume, P.; Van Hemelrijck, D. Evaluation of SHM System Produced by Additive Manufacturing via Acoustic Emission and Other NDT Methods. Sensors 2015, 15, 26709–26725. [Google Scholar] [CrossRef] [Green Version]
- Honarvar, F.; Varvani-Farahani, A. A review of ultrasonic testing applications in additive manufacturing: Defect evaluation, material characterization, and process control. Ultrasonics 2020, 108, 106227. [Google Scholar] [CrossRef]
- Katunin, A.; Dragan, K.; Dziendzikowski, M. Damage identification in aircraft composite structures: A case study using various non-destructive testing techniques. Compos. Struct. 2015, 127, 1–9. [Google Scholar] [CrossRef]
- Cerniglia, D.; Scafidi, M.; Pantano, A.; Rudlin, J. Inspection of additive-manufactured layered components. Ultrasonics 2015, 62, 292–298. [Google Scholar] [CrossRef]
- Asokkumar, A.; Jasiūnienė, E.; Raišutis, R.; Kažys, R.J. Comparison of Ultrasonic Non-Contact Air-Coupled Techniques for Characterization of Impact-Type Defects in Pultruded GFRP Composites. Materials 2021, 14, 1058. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Wang, B.; Liu, X.; Wu, J.; Deng, L.; Yuan, M.; Chen, Y.; Deng, Y.; Zhang, Y.; Ji, X. High-resolution air-coupled laser ultrasound imaging of microstructure and defects in braided CFRP. Compos. Commun. 2021, 28, 100915. [Google Scholar] [CrossRef]
- Caminero, M.; García-Moreno, I.; Rodríguez, G.; Chacón, J. Internal damage evaluation of composite structures using phased array ultrasonic technique: Impact damage assessment in CFRP and 3D printed reinforced composites. Compos. Part B Eng. 2019, 165, 131–142. [Google Scholar] [CrossRef]
- Castellano, A.; Mazzarisi, M.; Campanelli, S.L.; Angelastro, A.; Fraddosio, A.; Piccioni, M. Ultrasonic Characterization of Components Manufactured by Direct Laser Metal Deposition. Materials 2020, 13, 2658. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, Z.; Chen, J. Damage identification method based on continuous wavelet transform and mode shapes for composite laminates with cutouts. Compos. Struct. 2018, 191, 12–23. [Google Scholar] [CrossRef]
- Song, Y.; Zi, X.; Fu, Y.; Li, X.; Chen, C.; Zhou, K. Nondestructive testing of additively manufactured material based on ultrasonic scattering measurement. Measurement 2018, 118, 105–112. [Google Scholar] [CrossRef]
- Meng, M.; Chua, Y.J.; Wouterson, E.; Ong, C.P.K. Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks. Neurocomputing 2017, 257, 128–135. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Choi, S.; Park, S.-J.; Yoon, J. Inspecting Method for Defective Casting Products with Convolutional Neural Network (CNN). Int. J. Precis. Eng. Manuf. Technol. 2021, 8, 583–594. [Google Scholar] [CrossRef]
- Khumaidi, A.; Yuniarno, E.M.; Purnomo, M.H. Welding defect classification based on convolution neural network (CNN) and Gaussian kernel. In Proceedings of the Intelligent Technology and Its Applications (ISITIA), 2017 International Seminar on Intelligent, Surabaya, Indonesia, 28–29 August 2017; pp. 261–265. [Google Scholar] [CrossRef]
- Zhang, R.; Shi, J.; Gou, J.; Dong, H.; Mei, A. Intelligent detection method for workpiece defect based on industrial CT image. J. Meas. Sci. Instrum. 2019, 10, 299–306. [Google Scholar]
- Zhu, H.; Lin, L.; Chen, D.; Chen, J. PCB image location correction method based on multi-directional improved Sobel operator. J. Electron. Meas. Instrum. 2019, 33, 121–128. [Google Scholar]
- Zhang, Y.; Tian, X.; Ren, P. An adaptive bilateral filter based framework for image denoising. Neurocomputing 2014, 140, 299–316. [Google Scholar] [CrossRef]
- Lian, M.-J.; Huang, C.-L. Texture feature extraction of gray-level co-occurrence matrix for metastatic cancer cells using scanned laser pico-projection images. Lasers Med. Sci. 2019, 34, 1503–1508. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cui, J.; Wang, W.; Lin, C. A Study for Texture Feature Extraction of High-Resolution Satellite Images Based on a Direction Measure and Gray Level Co-Occurrence Matrix Fusion Algorithm. Sensors 2017, 17, 1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.; Ko, D.-K.; Lim, S.C.; Kim, H.S. Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network. Compos. Part B Eng. 2019, 161, 586–594. [Google Scholar] [CrossRef]
- Wang, Y.-X.; Han, H.-G.; Guo, M.; Qiao, J.-F. A self-organizing deep belief network based on information relevance strategy. Neurocomputing 2019, 396, 241–253. [Google Scholar] [CrossRef]
- Zhang, N.; Ding, S.; Zhang, J.; Xue, Y. An overview on Restricted Boltzmann Machines. Neurocomputing 2018, 275, 1186–1199. [Google Scholar] [CrossRef]
- Ding, S.; Su, C.; Yu, J. An optimizing BP neural network algorithm based on genetic algorithm. Artif. Intell. Rev. 2011, 36, 153–162. [Google Scholar] [CrossRef]
X | Y | S | Length | Width | Maximum Width | Sum of Length | Sum of Area | |
---|---|---|---|---|---|---|---|---|
(°) | (μs) | (No.) | (°) | (μs) | (μs) | (°) | (No.) | |
Front surface | 184.61 | 6.03 | 740 | 360.00 | 5.40 | 5.40 | 360.00 | 740 |
Rear surface | 178.99 | 21.41 | 139 | 360.00 | 1.60 | 1.60 | 360.00 | 139 |
Rear interface | 188.10 | 17.82 | 116 | 360.00 | 2.25 | 2.25 | 360.00 | 116 |
Defect | 111.26 | 12.17 | 35 | 56.25 | 1.85 | 1.85 | 123.75 | 73 |
296.78 | 12.08 | 38 | 67.50 | 1.80 |
X | Y | S | Length | Width | Maximum Width | Sum of Length | Sum of Area | |
---|---|---|---|---|---|---|---|---|
(°) | (μs) | (No.) | (°) | (μs) | (μs) | (°) | (No.) | |
Front surface | 183.26 | 6.17 | 759 | 360.00 | 5.60 | 5.60 | 360.00 | 759 |
Rear surface | 15.96 | 21.48 | 12 | 22.50 | 1.45 | 1.45 | 225.00 | 74 |
168.53 | 21.60 | 46 | 135.00 | 1.40 | ||||
350.21 | 20.95 | 16 | 33.75 | 1.20 | ||||
Rear interface | 11.36 | 18.30 | 6 | 11.25 | 1.25 | 2.20 | 146.25 | 66 |
184.16 | 18.02 | 51 | 112.50 | 2.20 | ||||
353.70 | 18.14 | 9 | 22.50 | 1.05 | ||||
Defect | 25.76 | 12.91 | 17 | 45.00 | 1.20 | 2.60 | 281.25 | 195 |
184.95 | 13.42 | 158 | 191.25 | 2.80 | ||||
344.59 | 12.76 | 20 | 45.00 | 1.45 |
X | Y | S | Length | Width | Maximum Width | Sum of Length | Sum of Area | |
---|---|---|---|---|---|---|---|---|
(°) | (μs) | (No.) | (°) | (μs) | (μs) | (°) | (No.) | |
Front surface | 184.16 | 5.92 | 717 | 360.00 | 5.65 | 5.65 | 360.00 | 717 |
Rear surface | 68.85 | 21.86 | 62 | 135.00 | 2.00 | 2.00 | 258.75 | 124 |
301.95 | 21.51 | 62 | 123.75 | 1.85 | ||||
Rear interface | 21.83 | 17.82 | 17 | 33.75 | 1.60 | 2.00 | 213.75 | 111 |
90.79 | 17.64 | 44 | 78.75 | 2.00 | ||||
316.35 | 17.56 | 50 | 101.25 | 1.85 | ||||
Defect | 32.06 | 12.35 | 53 | 56.25 | 2.60 | 4.45 | 292.50 | 344 |
191.36 | 11.75 | 245 | 180.00 | 4.45 | ||||
339.75 | 12.21 | 46 | 56.25 | 2.40 |
X | Y | S | Length | Width | Maximum Width | Sum of Length | Sum of Area | |
---|---|---|---|---|---|---|---|---|
(°) | (μs) | (No.) | (°) | (μs) | (μs) | (°) | (No.) | |
Front surface | 177.41 | 6.23 | 735 | 360.00 | 6.05 | 6.05 | 360.00 | 735 |
Defect | 192.15 | 12.36 | 49 | 67.50 | 2.20 | 2.20 | 67.50 | 49 |
Defect Type | Energy Mean | Entropy Mean | Contrast Mean | Correlation Mean |
---|---|---|---|---|
D1 | 0.5622 | 0.7911 | 0.2511 | 1.1007 |
D2 | 0.5501 | 0.8034 | 0.2470 | 1.0742 |
D3 | 0.4992 | 0.8791 | 0.2925 | 0.9593 |
D4 | 0.6628 | 0.6068 | 0.1081 | 1.4684 |
Sum of Length | Sum of Area | Maximum Width | Contrast Mean | Correlation Mean | |
---|---|---|---|---|---|
(°) | (No.) | (μs) | |||
D1 | 101.25 | 68 | 2.43 | 0.2389 | 1.063 |
78.75 | 39 | 2.00 | 0.2511 | 1.101 | |
90.00 | 62 | 2.25 | 0.2493 | 1.057 | |
112.50 | 89 | 2.60 | 0.2352 | 1.055 | |
168.75 | 124 | 2.45 | 0.2340 | 1.032 | |
D2 | 281.25 | 195 | 2.80 | 0.2470 | 1.074 |
202.50 | 116 | 1.85 | 0.2084 | 1.085 | |
213.75 | 183 | 3.00 | 0.2118 | 1.081 | |
292.50 | 248 | 3.05 | 0.2214 | 1.062 | |
247.50 | 181 | 2.40 | 0.2234 | 1.093 | |
D3 | 292.50 | 344 | 4.45 | 0.2925 | 0.959 |
326.25 | 371 | 4.60 | 0.1986 | 1.086 | |
247.50 | 195 | 3.15 | 0.2088 | 1.098 | |
236.25 | 225 | 3.85 | 0.2249 | 1.103 | |
360.00 | 446 | 4.00 | 0.1623 | 1.111 | |
D4 | 56.25 | 49 | 2.20 | 0.1081 | 1.468 |
112.50 | 47 | 1.95 | 0.0805 | 1.689 | |
135.00 | 87 | 2.60 | 0.1065 | 1.446 | |
146.25 | 63 | 1.75 | 0.0810 | 1.581 | |
112.50 | 61 | 2.13 | 0.0940 | 1.546 |
The Training Set | The Test Set | |||
---|---|---|---|---|
Wrong Number | Accuracy (%) | Wrong Number | Accuracy (%) | |
D0 | 0 | 100.00 | 0 | 100.00 |
D1 | 2 | 95.23 | 1 | 97.78 |
D2 | 5 | 92.38 | 3 | 93.33 |
D3 | 11 | 89.52 | 7 | 84.44 |
D4 | 0 | 100 | 0 | 100.00 |
Total number of errors | 18 | 11 | ||
The total accuracy (%) | 96.57 | 95.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, C.; Chen, S.; Xu, G.; Chen, Y. Defect Detection Method of Carbon Fiber Sucker Rod Based on Multi-Sensor Information Fusion and DBN Model. Sensors 2022, 22, 5189. https://doi.org/10.3390/s22145189
Hua C, Chen S, Xu G, Chen Y. Defect Detection Method of Carbon Fiber Sucker Rod Based on Multi-Sensor Information Fusion and DBN Model. Sensors. 2022; 22(14):5189. https://doi.org/10.3390/s22145189
Chicago/Turabian StyleHua, Chenquan, Siwei Chen, Guoyan Xu, and Yang Chen. 2022. "Defect Detection Method of Carbon Fiber Sucker Rod Based on Multi-Sensor Information Fusion and DBN Model" Sensors 22, no. 14: 5189. https://doi.org/10.3390/s22145189
APA StyleHua, C., Chen, S., Xu, G., & Chen, Y. (2022). Defect Detection Method of Carbon Fiber Sucker Rod Based on Multi-Sensor Information Fusion and DBN Model. Sensors, 22(14), 5189. https://doi.org/10.3390/s22145189