A Diffused Mini-Sniffing Sensor for Monitoring SO2 Emissions Compliance of Navigating Ships
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diffused Mini-Sniffing Sensor
2.1.1. CO2 Sensor
2.1.2. SO2 Sensor
2.1.3. Power-Supply Module
2.2. UAV
2.3. Data Server
3. Experimental Methods
3.1. Monitoring Conditions
3.2. Monitoring Method
- 1.
- Observe the relative distance between the ship and the monitoring point, select an appropriate take-off time, and control the ship exhaust mini-sniffing UAV to fly to the monitored ship;
- 2.
- Adjust the position of the UAV according to the wind speed, wind direction and the height of the ship’s chimney to ensure that the UAV is always in the downwind direction of the plume;
- 3.
- Control the position of the UAV in the downwind direction of the plume, keep a safe distance of 10–15 m from the ship’s chimney, and track and monitor for 1–2 min;
- 4.
- Check the concentrations of SO2 and CO2 in the curve of the data-monitoring software in real time, and determine whether the FSC exceeds the standard according to the FSC estimated by the software;
- 5.
- After the exhaust gas monitoring is completed, observe whether the power of the drone is sufficient. If the power is sufficient, continue to track and monitor the next ship; if the power is low, control the UAV to return.
3.3. Calculation of FSC
4. Experimental Results and Analysis
4.1. Comparative Analysis of Ship Exhaust Sniffing UAV
4.2. Accuracy Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ICS: Impact Of COVID-19 and the Intensifying Crew Change Crisis–2020 Annual Review. 2020. Available online: https://www.ics-shipping.org/publication/annual-review-2020/ (accessed on 10 March 2022).
- UNCTAD: World Seaborne Trade by Types of Cargo and by Group of Economies, Annual, United Nations Conference on Trade and Developmen. Available online: https://unctadstat.unctad.org/wds/TableViewer/tableView.aspx?ReportId=32363 (accessed on 5 March 2022).
- Eyring, V.; Isaksen, I.S.A.; Berntsen, T.; Collins, W.J.; Corbett, J.J.; Endresen, O.; Grainger, R.G.; Moldanova, J.; Schlager, H.; Stevenson, D.S. Transport impacts on atmosphere and climate: Shipping. Atmos. Environ. 2010, 44, 4735–4771. [Google Scholar] [CrossRef]
- Gencarelli, C.N.; Hedgecock, I.M.; Sprovieri, F.; Schürmann, G.J.; Pirrone, N. Importance of Ship Emissions to Local Summertime Ozone Production in the Mediterranean Marine Boundary Layer: A Modeling Study. Atmosphere 2014, 5, 937–958. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.S.; Pitari, G.; Grewe, V. Transport impacts on atmosphere and climate: Aviation. Atmos. Environ. 2010, 37, 4678–4734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Fu, M.L.; Jin, X.X.; Shang, Y.; Shindell, D.; Faluvegi, G.; Shindell, C.; He, K.B. Health and climate impacts of ocean-going vessels in East Asia. Nat. Clim. Change 2016, 6, 1037–1041. [Google Scholar] [CrossRef]
- Sofiev, M.; Winebrake, J.J.; Johansson, L. Cleaner fuels for ships provide public health benefits with climate trade-offs. Nat. Commun. 2018, 406, 406. [Google Scholar] [CrossRef] [Green Version]
- Viana, M.; Hammingh, P.; Colette, A.; Querol, X.; Degraeuwe, B.; de Vlieger, I.; van Aardenne, J. Impact of maritime transport emissions on coastal air quality in Europe. Atmos. Environ. 2014, 90, 96–105. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Y.; Lin, Y.; Pan, J.; Zhang, Y.; Louie, P.K.K.; Li, M.; Fu, Q. Atmospheric pollution from ships and its impact on local air quality at a port site in Shanghai. Atmos. Chem. Phys. 2019, 19, 6315–6330. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Bell, T.G.; Hopkins, F.E.; Smyth, T.J. Attribution of atmospheric sulfur dioxide over the English Channel to dimethyl sulfide and changing ship emissions. Atmos. Chem. Phys. 2016, 16, 4771–4783. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Köhler, H.W.; van Aardenne, J.; Lauer, A. Emissions from international shipping: 1. The last 50 years. J. Geophys. Res. 2005, 110, D17305. [Google Scholar] [CrossRef]
- Villa, T.F.; Brown, R.A.; Jayaratne, E.R.; Gonzalez, L.F.; Morawska, L.; Ristovski, Z.D. Characterization of the particle emission from a ship operating at sea using an unmanned aerial vehicle. Atmos. Meas. Tech. 2019, 12, 691–702. [Google Scholar] [CrossRef]
- IMO: Revised MARPOL Annex IV. 2008. Available online: https://www.bahamasmaritime.com/wp-content/uploads/2021/12/MN059-MARPOL-Annex-IV-Sewage-Pollution-Prevention-v1.0.pdf (accessed on 16 March 2022).
- International Maritime Organization (IMO): Sulphur Oxides (SOx) and Particulate Matter (PM)–Regulation 14. 2016. Available online: https://www.imo.org/en/OurWork/Environment/Pages/Sulphur-oxides-(SOx)-%E2%80%93-Regulation-14.aspx (accessed on 26 December 2021).
- MOT. Implementation of the Ship Emission Control Area in Pearl River Delta, the Yangtze River Delta and the Bohai Rim (Beijing–Tianjin–Hebei Area), Ministry of Transport, C., Beijing, China, 2015. Available online: http://www.gov.cn/xinwen/2015-12/04/content_5019932.htm (accessed on 6 February 2022).
- Feng, J.; Zhang, Y.; Li, S.; Mao, J.; Patton, A.P.; Zhou, Y.; Ma, W.; Liu, C.; Kan, H.; Huang, C.; et al. The influence of spatiality on shipping emissions, air quality and potential human exposure in the Yangtze River Delta/Shanghai, China. Atmos. Chem. Phys. 2019, 19, 6167–6183. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Pan, S.; Chen, W.; Ni, X.; An, B. Monitoring of compliance with fuel sulfur content regulations through unmanned aerial vehicle (UAV) measurements of ship emissions. Atmos. Meas. Tech. 2019, 12, 6113–6124. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Hou, L.; Zhong, R.; Chen, W.; Ni, X.; Pan, S.; Zhao, M.; An, B. Monitoring the compliance of sailing ships with fuel sulfur content regulations using unmanned aerial vehicle (UAV) measurements of ship emissions in open water. Atmos. Meas. Tech. 2020, 13, 4899–4909. [Google Scholar] [CrossRef]
- Beecken, J.; Mellqvist, J.; Salo, K.; Ekholm, J.; Jalkanen, J.-P. Airborne emission measurements of SO2, NOx and particles from individual ships using a sniffer technique. Atmos. Meas. Tech. 2014, 7, 1957–1968. [Google Scholar] [CrossRef]
- Alföldy, B.; Lööv, J.B.; Lagler, F.; Mellqvist, J.; Berg, N.; Beecken, J.; Weststrate, H.; Duyzer, J.; Bencs, L.; Horemans, B.; et al. Measurements of air pollution emission factors for marine transportation in SECA. Atmos. Meas. Tech. 2013, 6, 1777–1791. [Google Scholar] [CrossRef] [Green Version]
- Beecken, J. Remote Measurements of Gas and Particulate Matter Emissions from Individual Ships. Ph.D. Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2015. [Google Scholar]
- Beecken, J.; Mellqvist, J.; Salo, K.; Ekholm, J.; Jalkanen, J.-P.; Johansson, L.; Litvinenko, V.; Volodin, K.; Frank-Kamenetsky, D.A. Emission factors of SO2, NOx and particles from ships in Neva Bay from ground-based and helicopter-borne measurements and AIS-based modeling. Atmos. Chem. Phys. 2015, 15, 5229–5241. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Wang, S.; Zhu, J.; Guo, Y.; Zhang, R.; Liu, Y.; Zhang, Y.; Yu, Q.; Ma, W.; Zhou, B. Surveillance of SO2 and NO2 from ship emissions by MAX-DOAS measurements and the implications regarding fuel sulfur content compliance. Atmos. Chem. Phys. 2019, 19, 13611–13626. [Google Scholar] [CrossRef] [Green Version]
- Kattner, L.; Mathieu-öffing, B.; Burrows, J.P.; Richter, A.; Schmolke, S.; Seyler, A.; Wittrock, F. Monitoring compliance with sulfur content regulations of shipping fuel by in situ measurements of ship emissions. Atmos. Chem. Phys. 2015, 15, 10087–10092. [Google Scholar] [CrossRef] [Green Version]
- Pirjola, L.; Pajunoja, A.; Walden, J.; Jalkanen, J.-P.; Rnkkö, T.; Kousa, A.; Koskentalo, T. Mobile measurements of ship emissions in two harbour areas in Finland. Atmos. Meas. Tech. 2014, 7, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Deng, F.; Man, H.; Fu, M.; Lv, Z.; Xiao, Q.; Jin, X.; Liu, S.; He, K.; Liu, H. Compliance and port air quality features with respect to ship fuel switching regulation: A field observation campaign, SEISO-Bohai. Atmos. Chem. Phys. 2019, 19, 4899–4916. [Google Scholar] [CrossRef] [Green Version]
- Alföldy, B.; Lööv, J.B.; Lagler, F. Final Report on: Remote Sensing of Ships’ Emissions of Sulphur Dioxide, European Commission, Joint Research Centre. 2011. Available online: https://environment.ec.europa.eu/topics/air_en (accessed on 18 May 2022).
- Mellqvist, J.; Conde, V.; Beecken, J.; Ekholm, J. Certification of an Aircraft and Airborne Surveillance of Fuel Sulfur Content in Ships at the SECA Border, CompMon. 2017. Available online: https://compmon.eu/ (accessed on 10 December 2021).
- Villa, T.F.; Gonzalez, F.; Miljievic, B.; Ristovski, Z.D.; Morawska, L. An Overview of Small Unmanned Aerial Vehicles for Air Quality Measurements: Present Applications and Future Prospective. Sensors 2016, 16, 1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, Z. Application of UAV based sensing technology for ship emission and high sulfur fuel screening. In Proceedings of the 4th International Symposium on Environment and Health, Shanghai, China, 4–6 December 2018. [Google Scholar]
- Ning, Z. Integrated UAV and microsensing technology for ship emission and high sulphur fuel screening. In Proceedings of the Motor Vehicle/Vessel Emissions Control Workshop 2019, Chengdu, China, 16–18 January 2019. [Google Scholar]
- Contini, D.; Gambaro, A.; Donateo, A.; Cescon, P.; Cesari, D.; Merico, E.; Belosi, F.; Citron, M. Inter-annual trend of the primary contribution of ship emissions to PM2.5 concentrations in Venice (Italy): Efficiency of emissions mitigation strategies. Atmos. Environ. 2015, 102, 183–190. [Google Scholar] [CrossRef]
- Gao, Y.; Lee, S.C.; Huang, Y.; Chow, J.C.; Watson, J.G. Chemical characterization and source apportionment of size resolved particles in Hong Kong sub-urban area. Atmos. Res. 2016, 170, 112–122. [Google Scholar] [CrossRef]
- THE SCIPPER PROJECT: D2.1 Review of Available Remote Systems for Ship Emission Measurements. 2019. Available online: https://www.scipper-project.eu/wp-content/uploads/2020/01/scipper_d2_1_20191220.pdf (accessed on 18 March 2022).
- Abhishek, A.; Peng, W.; Nirmal, K.G.; Li, S. Protocol development for real-time ship fuel sulfur content determination using drone-based plume sniffing microsensor system. Sci. Total Environ. 2020, 744, 140885. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Weight | 1375 g |
Battery capacity | 5870 mAh |
Dimensions | 289.5 mm × 289.5 mm × 196 mm |
Maximum rising speed | P-GPS: 5 m/s |
Maximum descending speed | P-GPS: 3 m/s |
Maximum horizontal flight speed | P-GPS: 50 km/h |
Maximum flight altitude | 6000 m |
Maximum flight distance | 8000 m |
Maximum tolerable wind speed | 10 m/s |
Maximum flight time | 30 min |
Manufacturer | UAV Model | Flight Time (min) | Sensor Size (mm) | Sensor Weight (g) |
---|---|---|---|---|
Explicit | / | / | 145 × 75 × 63 | 500 |
Aeromon Oy | DJI M600 | 40 | 182 × 180 × 200 | 960 |
SMU | DJI M600 PRO | 40 | 200 × 120 × 90 | 900 |
Spaiens | DJ M210 | 35 | 170 × 66 × 66 | 750 |
MSS | DJ M210 RTK | 35 | 195 × 75 × 75 | 750 |
Soarability | DJ M210 | 35 | 157 ×103 × 87 | 400–500 |
TIWTE | DJ Phantom 4 | 30 | 140 × 80 × 40 | 300 |
Number | Ship | Measured Value (m/m) | True Value (m/m) | Deviation (m/m) | Error Range |
---|---|---|---|---|---|
1 | Fu xxx | 2.32% | 2.40% | −0.08% | 3.33% |
2 | Fu xxx | 2.05% | 2.19% | −0.14% | 6.80% |
3 | Jin xxx | 2.33% | 2.49% | −0.16% | 6.21% |
4 | Hua xxx | 3.36% | 3.24% | +0.12% | 3.46% |
5 | Fu xxx | 3.71% | 3.60% | +0.11% | 2.97% |
6 | Tai xxx | 1.16% | 1.30% | −0.14% | 10.26% |
7 | Shun xxx | 2.17% | 2.25% | −0.08% | 3.33% |
8 | Heng xxx | 3.12% | 3.03% | +0.09% | 3.22% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, M.; Peng, S.; Xie, X.; Jiang, Z.; Hu, J.; Qi, Z. A Diffused Mini-Sniffing Sensor for Monitoring SO2 Emissions Compliance of Navigating Ships. Sensors 2022, 22, 5198. https://doi.org/10.3390/s22145198
Deng M, Peng S, Xie X, Jiang Z, Hu J, Qi Z. A Diffused Mini-Sniffing Sensor for Monitoring SO2 Emissions Compliance of Navigating Ships. Sensors. 2022; 22(14):5198. https://doi.org/10.3390/s22145198
Chicago/Turabian StyleDeng, Mengtao, Shitao Peng, Xin Xie, Zhi Jiang, Jianbo Hu, and Zhaoyu Qi. 2022. "A Diffused Mini-Sniffing Sensor for Monitoring SO2 Emissions Compliance of Navigating Ships" Sensors 22, no. 14: 5198. https://doi.org/10.3390/s22145198
APA StyleDeng, M., Peng, S., Xie, X., Jiang, Z., Hu, J., & Qi, Z. (2022). A Diffused Mini-Sniffing Sensor for Monitoring SO2 Emissions Compliance of Navigating Ships. Sensors, 22(14), 5198. https://doi.org/10.3390/s22145198