Prediction of Stability during Walking at Simulated Ship’s Rolling Motion Using Accelerometers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.3. Step Detection and Feature Extraction
2.4. Feature Selection and Modeling
2.4.1. LASSO and Elastic Net
2.4.2. F-Test Feature Selection
2.4.3. Neighborhood Component Analysis
2.4.4. ReliefF Feature Selection
2.4.5. Model Fitting
2.5. Performance Criteria
2.6. Statistical Analysis
3. Results
3.1. Feature Selection and Model Fitting Results
3.2. Prediction and Validation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Stevens, S.C.; Parsons, M.G. Effects of Motion at Sea on Crew Performance: A Survey. Mar. Tech. 2002, 39, 29–47. [Google Scholar] [CrossRef]
- Kim, H.-T.; Lee, J.-G.; Lee, D.-G.; Park, J.-H. State of the Art of Human Factors Technologies for Ships and Ocean Engineering. J. Ergonom. Soci. Korea 2001, 20, 99–111. [Google Scholar]
- Örtlund, E.; Larsson, M. Man Overboard Detecting Systems Based on Wireless Technology. Bachelor’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2018. [Google Scholar]
- Conway, G.A. Surveillance and Prevention of Occupational Injuries in Alaska: A Decade of Progress, 1990–1999; National Institute for Occupational Safety and Health: Washington, DC, USA, 2002; p. 49. [Google Scholar]
- Kim, J.W.; Kim, B.O.; Lim, J.G.; Lee, J.H.; Yim, J.H.; Park, D.K. Developmental Plan of Man-Overboard Alert Devices of Small Fishing Vessels: A Study. J. Nav. Port Res. 2018, 42, 245–252. [Google Scholar]
- Kuo, A.D. Stabilization of Lateral Motion in Passive Dynamic Walking. Int. J. Robot. Res. 1999, 18, 917–930. [Google Scholar] [CrossRef]
- O’Connor, S.M.; Kuo, A.D. Direction-Dependent Control of Balance During Walking and Standing. J. Neurophysi. 2009, 102, 1411–1419. [Google Scholar] [CrossRef] [Green Version]
- Bauby, C.E.; Kuo, A.D. Active control of lateral balance in human walking. J. Biomech. 2000, 33, 1433–1440. [Google Scholar] [CrossRef]
- Dean, J.C.; Alexander, N.B.; Kuo, A.D. The Effect of Lateral Stabilization on Walking in Young and Old Adults. IEEE Trans. Biomed. Eng. 2007, 54, 1919–1926. [Google Scholar] [CrossRef] [Green Version]
- Sinitksi, E.H.; Terry, K.; Wilken, J.M.; Dingwell, J.B. Effects of perturbation magnitude on dynamic stability when walking in destabilizing environments. J. Biomech. 2012, 45, 2084–2091. [Google Scholar] [CrossRef]
- Jansen, K.; de Groote, F.; Duysens, J.; Jonkers, I. How gravity and muscle action control mediolateral center of mass excursion during slow walking: A simulation study. Gait Posture 2014, 39, 91–97. [Google Scholar] [CrossRef]
- Ogaya, S.; Okita, Y.; Fuchioka, S. Muscle contributions to center of mass excursion in ankle and hip strategies during forward body tilting. J. Biomech. 2016, 49, 3381–3386. [Google Scholar] [CrossRef]
- Hof, A.L.; Gazendam, M.G.J.; Sinke, W.E. The condition for dynamic stability. J. Biomech. 2005, 38, 1–8. [Google Scholar] [CrossRef]
- Noamani, A.; Agarwal, K.; Vette, A.H.; Rouhani, H. Predicted threshold for seated stability: Estimation of margin of stability using wearable inertial sensors. IEEE J. Biomed. Health Inform. 2021, 25, 3361–3372. [Google Scholar] [CrossRef]
- Gill, L.; Huntley, A.H.; Mansfield, A. Does the margin of stability measure predict medio-lateral stability of gait with a constrained-width base of support? J. Biomech. 2019, 95, 109317. [Google Scholar] [CrossRef]
- Young, P.M.M.; Dingwell, J.B. Voluntary changes in step width and step length during human walking affect dynamic margins of stability. Gait Posture 2012, 36, 219–224. [Google Scholar] [CrossRef] [Green Version]
- Walter, H.; Li, R.; Wagman, J.B.; Stoffregen, T.A. Adaptive perception of changes in affordances for walking on a ship at sea. Hum. Mov. Sci. 2019, 64, 28–37. [Google Scholar] [CrossRef]
- McAndrew, P.M.; Dingwell, J.B.; Wilken, J.M. Walking variability during continuous pseudo-random oscillations of the support surface and visual field. J. Biomech. 2010, 43, 1470–1475. [Google Scholar] [CrossRef] [Green Version]
- McAndrew, P.M.; Wilken, J.M.; Dingwell, J.B. Dynamic stability of human walking in visually and mechanically destabilizing environments. J. Biomech. 2011, 44, 644–649. [Google Scholar] [CrossRef] [Green Version]
- McAndrew Young, P.M.; Wilken, J.M.; Dingwell, J.B. Dynamic Margins of Stability During Human Walking in Destabilizing Environments. J. Biomech. 2012, 45, 1053. [Google Scholar] [CrossRef] [Green Version]
- Hak, L.; Houdijk, H.; Steenbrink, F.; Mert, A.; van der Wurff, P.; Beek, P.J.; van Dieën, J.H. Stepping strategies for regulating gait adaptability and stability. J. Biomech. 2013, 46, 905–911. [Google Scholar] [CrossRef] [Green Version]
- Hak, L.; Houdijk, H.; Steenbrink, F.; Mert, A.; van der Wurff, P.; Beek, P.J.; van Dieën, J.H. Speeding up or slowing down?: Gait adaptations to preserve gait stability in response to balance perturbations. Gait Posture 2012, 36, 260–264. [Google Scholar] [CrossRef] [Green Version]
- Vicon Motion System Ltd. Plug-in Gait Reference Guide. Available online: https://docs.vicon.com/display/Nexus26/PDF+downloads+for+Vicon+Nexus?preview=/42696722/42697399/Plug-in%20Gait%20Reference%20Guide.pdf (accessed on 2 March 2022).
- Choi, J.; Youn, J.-H.; Haas, C. Machine Learning Approach for Foot-side Classification using a Single Wearable Sensor. In Proceedings of the 40th International Conference on Information Systems, ICIS 2019, Munich, Germany, 15–18 December 2019. [Google Scholar]
- Choi, J.; Parker, S.M.; Knarr, B.A.; Gwon, Y.; Youn, J.-H. Wearable Sensor-Based Prediction Model of Timed Up and Go Test in Older Adults. Sensors 2021, 21, 6831. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Alelyani, S.; Liu, H. Feature Selection for Classification: A Review. In Data Classification: Algorithms and Applications; CRC Press: Boca Raton, FL, USA, 2014; p. 37. [Google Scholar]
- Tibshiranit, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soci. Ser. B (Methodol.) 1996, 58, 267–288. [Google Scholar]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soci. Ser. B (Stat. Methodol.) 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Bhanot, G.; Alexe, G.; Venkataraghavan, B.; Levine, A.J. A robust meta-classification strategy for cancer detection from MS data. Proteomics 2006, 6, 592–604. [Google Scholar] [CrossRef]
- Saeys, Y.; Inza, I.; Larrañaga, P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23, 2507–2517. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Wang, K.; Zuo, W. Neighborhood Component Feature Selection for High-Dimensional Data. J. Comput. 2012, 7, 161–168. [Google Scholar] [CrossRef]
- Raghu, S.; Sriraam, N. Classification of focal and non-focal EEG signals using neighborhood component analysis and machine learning algorithms. Expert Sys. Appl. 2018, 113, 18–32. [Google Scholar] [CrossRef]
- Kira, K.; Rendell, L.A. A Practical Approach to Feature Selection. In Machine Learning Proceedings 1992; Sleeman, D., Edwards, P., Eds.; Morgan Kaufmann: Burlington, MA, USA, 1992; pp. 249–256. [Google Scholar]
- Robnik-Sikonja, M.; Igor, K. An adaptation of Relief for attribute estimation in regression. In Proceedings of the 14th International Conference on Machine Learning, Nashville, TN, USA, 8–12 July 1997. [Google Scholar]
- Kononenko, I.; Šimec, E.; Robnik-Šikonja, M. Overcoming the Myopia of Inductive Learning Algorithms with RELIEFF. Appl. Intel. 1997, 7, 39–55. [Google Scholar] [CrossRef]
- Shrestha, N. Detecting Multicollinearity in Regression Analysis. Am. J. Appl. Math. Stat. 2020, 8, 39–42. [Google Scholar] [CrossRef]
- Schmidt, A.F.; Finan, C. Linear regression and the normality assumption. J. Clinic. Epidemiol. 2018, 98, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Hoerl, A.E.; Kennard, R.W. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technomet. 1970, 12, 55–67. [Google Scholar] [CrossRef]
- Weiss, A.; Herman, T.; Plotnik, M.; Brozgol, M.; Giladi, N.; Hausdorff, J.M. An instrumented timed up and go: The added value of an accelerometer for identifying fall risk in idiopathic fallers. Physiol. Meas. 2011, 32, 2003. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: Abingdon-on-Thames, UK, 2013. [Google Scholar]
- Daoud, J.I. Multicollinearity and Regression Analysis. J. Phys. Conf. Ser. 2017, 949, 12009. [Google Scholar] [CrossRef]
Characteristics | Mean ± Standard Deviation |
---|---|
Gender (male/female) | 20/10 |
Age (years) | 30.3 ± 6.1 |
Height (cm) | 173.0 ± 9.4 |
Weight (kg) | 71.9 ± 14.5 |
Body Mass Index (BMI) (kg/m2) | 23.8 ± 3.4 |
Feature | Description |
---|---|
M | Whole step vector magnitude |
M10 | Initial 10% step vector magnitude |
LM | Lateral vector magnitude during a whole step |
VM | Vertical vector magnitude during a whole step |
AM | Anterior–posterior vector magnitude during a whole step |
MD | Vector magnitude during double stance |
LMD | Lateral vector magnitude during double stance |
VMD | Vertical vector magnitude during double stance |
AMD | Anterior-posterior vector magnitude during double stance |
M30 | Vector magnitude during mid-stance |
LM30 | Lateral vector magnitude during mid-stance |
VM30 | Vertical vector magnitude during mid-stance |
AM30 | Anterior–posterior vector magnitude during mid-stance |
LHM | Lateral heel-strike magnitude |
LHS | Standard deviation of lateral acceleration during initial 10% step |
VHM | Vertical heel-strike magnitude |
VHS | Standard deviation of vertical acceleration during initial 10% step |
AHM | Anterior–posterior heel-strike magnitude |
AHS | Standard deviation of anterior-posterior acceleration during initial 10% step |
ST | Step Time |
Rank | Peak COM Excursion | MOS Variability | ||||
---|---|---|---|---|---|---|
LASSO | F-Test | ReliefF | LASSO | F-Test | ReliefF | |
1 | vAHS | vAHS | sAHS | sLHS * | vAHS | sAHS |
2 | sLHS * | sAHS | aAHS | sAHS * | vLHM | sAMD |
3 | sAHS * | vAMD | aAM | sAMD * | vLM | aAMD |
4 | sST * | vAM | aAMD | aLHM * | vLMD | sLHS |
5 | sAMD | vLM | sAM | aAMD * | vLHS | sAM |
6 | aLHM | sVHM | sAMD | sVHM * | vST | vLM30 |
7 | aVHS | vLHM | aST | vLM30 | vAMD | vAHS |
8 | aVHM | vST | aAM30 | aVM30 | sVHM | aAM |
9 | aAMD | vLM30 | sLHS | vAHM | vVHM | sMD |
10 | sAM | sMD | vAHS | sMD | vAM | vM |
Feature | Peak COM Excursion | MOS Variability | ||||
---|---|---|---|---|---|---|
LASSO | F-Test | ReliefF | LASSO | F-Test | ReliefF | |
1 | 2.24 | 1.34 | 433.55 * | 1.61 | 4.12 | 7.12 * |
2 | 1.70 | 2.48 | 93.76 * | 1.53 | 12.88 * | 8.00 * |
3 | 2.11 | 1.38 | 164.77 * | 1.52 | 9.03 * | 3.66 |
4 | 1.94 | 6.71 * | 3.01 | 1.84 | 14.25 * | 2.88 |
5 | 3.01 | 9.51 * | 4.61 | 2.34 | 8.04 * | 2.48 |
6 | 2.33 | 8.57 * | 3.22 | 1.59 | 12.23 * | 1.48 |
7 | 1.54 | 1.69 | 2.14 | 2.22 | 14.18 * | 2.52 |
8 | 2.38 | 5.57 * | 1.50 | 1.63 | 9.11 * | 2.30 |
9 | 1.50 | 8.79 * | 2.35 | 1.62 | 8.02 * | 1.31 |
10 | 2.73 | 1.78 | 1.95 | 1.14 | 1.94 | 1.75 |
No. of Feature | Peak COM Excursion | MOS Variability | ||||
---|---|---|---|---|---|---|
LASSO | F-Test | ReliefF | LASSO | F-Test | ReliefF | |
1 | 0.0997 | - | - | - | - | - |
2 | - | 0.0935 | 0.1007 | - | 0.0056 | 0.0061 |
3 | - | 0.0935 | 0.1006 | - | 0.0055 | 0.0051 |
4 | 0.0929 | 0.0936 | 0.1010 | - | 0.0056 | 0.0048 |
5 | 0.0916 | 0.0941 | 0.1007 | - | 0.0055 | 0.0049 |
6 | 0.0921 | 0.0947 | 0.0947 | 0.0045 | 0.0054 | 0.00474 |
7 | 0.0883 | 0.0901 | 0.0946 | 0.0045 | 0.0054 | 0.00466 |
8 | 0.0885 | 0.0896 | 0.0960 | 0.0044 | 0.0052 | 0.00468 |
9 | 0.0885 | 0.0899 | 0.0945 | 0.0043 | 0.0052 | 0.00469 |
10 | 0.0890 | 0.0901 | 0.0909 | 0.0041 | 0.0051 | 0.00472 |
Dependent Variable | Group | Mean | Standard Deviation | p-Value | Effect Size (Cohen’s d) |
---|---|---|---|---|---|
Peak COM excursion | Actual | 0.3585 | 0.1513 | 0.0527 | 0.0053 |
Predicted | 0.3593 | 0.1041 | |||
MOS variability | Actual | 0.0215 | 0.0090 | 0.0318 * | 0.0111 |
Predicted | 0.0216 | 0.0078 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Knarr, B.A.; Gwon, Y.; Youn, J.-H. Prediction of Stability during Walking at Simulated Ship’s Rolling Motion Using Accelerometers. Sensors 2022, 22, 5416. https://doi.org/10.3390/s22145416
Choi J, Knarr BA, Gwon Y, Youn J-H. Prediction of Stability during Walking at Simulated Ship’s Rolling Motion Using Accelerometers. Sensors. 2022; 22(14):5416. https://doi.org/10.3390/s22145416
Chicago/Turabian StyleChoi, Jungyeon, Brian A. Knarr, Yeongjin Gwon, and Jong-Hoon Youn. 2022. "Prediction of Stability during Walking at Simulated Ship’s Rolling Motion Using Accelerometers" Sensors 22, no. 14: 5416. https://doi.org/10.3390/s22145416
APA StyleChoi, J., Knarr, B. A., Gwon, Y., & Youn, J. -H. (2022). Prediction of Stability during Walking at Simulated Ship’s Rolling Motion Using Accelerometers. Sensors, 22(14), 5416. https://doi.org/10.3390/s22145416