Crosstalk Defect Detection Method Based on Salient Color Channel Frequency Domain Filtering
Abstract
:1. Introduction
- (1)
- A new crosstalk defect detection method is proposed, which combines color feature extraction and frequency-domain GTB filtering to achieve efficient and accurate detection of crosstalk defects under low contrast and strong background noise.
- (2)
- An adaptive salient color channel selection method is proposed, which can retain salient color features for large defects and solve the problem of difficult feature extraction.
- (3)
- The GTB frequency-domain filtering method is proposed, which enhances the salient regions of defects and suppresses the interference of background noise, and realizes the effective separation of low-contrast crosstalk defects and background noise.
2. Related Works
3. Methodology
3.1. Algorithm Architecture
3.2. Salient Color Channel Selection
3.3. Frequency Domain GTB Filtering
3.3.1. Quaternion Representation and Hypercomplex Fourier Transform
3.3.2. Gaussian Filter Parameter Optimization
3.3.3. Frequency Domain Threshold Screening and Bandpass Filtering
4. Experimental Results
4.1. Crosstalk Defect Data and Image Quality Evaluation
4.2. Color Channel Significance Analysis
4.3. GTB Experiment Comparison and Result Analysis
4.4. Comparison of Different Methods
4.4.1. Channel Selection Comparison
4.4.2. Algorithm Detection Effect Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ming, W.; Shen, F.; Li, X.; Zhang, Z.; Du, J.; Chen, Z.; Cao, Y. A comprehensive review of defect detection in 3C glass components. Measurement 2020, 158, 107722. [Google Scholar] [CrossRef]
- Lingyu, S.; Huaixin, C.; Zhixi, W. Defect Detection Method of LCD Complex Display Screen Combining Feature Matching and Color Correction. In Proceedings of the 2021 18th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 17–19 December 2021. [Google Scholar]
- Li, C.; Zhang, X.; Huang, Y.; Tang, C.; Fatikow, S. A novel algorithm for defect extraction and classification of mobile phone screen based on machine vision. Comput. Ind. Eng. 2020, 146, 106530. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Zuo, C.; Xing, M. Defect detection of mobile phone screen based on improved difference image method. In Proceedings of the 2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), Shanghai, China, 21–24 November 2019. [Google Scholar]
- Ngo, C.; Park, Y.J.; Jung, J.; Hassan, R.U.; Seok, J. A new algorithm on the automatic TFT-LCD mura defects inspection based on an effective background reconstruction. J. Soc. Inf. Disp. 2017, 25, 737–752. [Google Scholar] [CrossRef]
- Yang, H.; Song, K.; Mei, S.; Yin, Z. An accurate mura defect vision inspection method using outlier-prejudging-based image background construction and region-gradient-based level set. IEEE Trans. Autom. Sci. Eng. 2018, 15, 1704–1721. [Google Scholar] [CrossRef]
- Ma, Z.; Gong, J. An automatic detection method of Mura defects for liquid crystal display. In Proceedings of the 2019 Chinese Control Conference (CCC), Guangzhou, China, 27–30 July 2019. [Google Scholar]
- Chen, L.-C.; Kuo, C.-C. Automatic TFT-LCD mura defect inspection using discrete cosine transform-based background filtering and ‘just noticeable difference’quantification strategies. Meas. Sci. Technol. 2007, 19, 015507. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Li, X.; Xiao, J. A cascaded Mura defect detection method based on mean shift and level set algorithm for active-matrix OLED display panel. J. Soc. Inf. Disp. 2019, 27, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Xiao, J. A Region-Scalable Fitting Model Algorithm Combining Gray Level Difference of Sub-image for AMOLED Defect Detection. In Proceedings of the 2018 IEEE International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, 18–20 August 2018. [Google Scholar]
- Zhu, Y.; Ding, R.; Huang, W.; Wei, P.; Yang, G.; Wang, Y. HMFCA-Net: Hierarchical multi-frequency based Channel attention net for mobile phone surface defect detection. Pattern Recognit. Lett. 2022, 153, 118–125. [Google Scholar] [CrossRef]
- Zhu, H.; Huang, J.; Liu, H.; Zhou, Q.; Zhu, J.; Li, B. Deep-Learning-Enabled Automatic Optical Inspection for Module-Level Defects in LCD. IEEE Internet Things J. 2021, 9, 1122–1135. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Chang, K.-H.; Meng, H.-M.; Chiu, H.-C. A Novel Multicategory Defect Detection Method Based on the Convolutional Neural Network Method for TFT-LCD Panels. Math. Probl. Eng. 2022, 2022, 6505372. [Google Scholar] [CrossRef]
- Ming, W.; Cao, C.; Zhang, G.; Zhang, H.; Zhang, F.; Jiang, Z.; Yuan, J. Application of Convolutional Neural Network in Defect Detection of 3C Products. IEEE Access 2021, 9, 135657–135674. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Dai, W. A two-stage multiscale residual attention network for light guide plate defect detection. IEEE Access 2020, 9, 2780–2792. [Google Scholar] [CrossRef]
- Pan, J.; Zeng, D.; Tan, Q.; Wu, Z.; Ren, Z. EU-Net: A novel semantic segmentation architecture for surface defect detection of mobile phone screens. IET Image Process 2022, 16, 2568–2576. [Google Scholar] [CrossRef]
- Lo Sciuto, G.; Capizzi, G.; Shikler, R.; Napoli, C. Organic solar cells defects classification by using a new feature extraction algorithm and an EBNN with an innovative pruning algorithm. Int. J. Intell. Syst. 2021, 36, 2443–2464. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef] [Green Version]
- Shangwang, L.; Ming, L.; Wentao, M.; Guoqi, L. Improved HFT model for saliency detection. Comput. Eng. Des. 2015, 36, 2167–2173. [Google Scholar]
- Ell, T.A.; Sangwine, S.J. Hypercomplex Fourier transforms of color images. IEEE Trans. Image Process. 2006, 16, 22–35. [Google Scholar] [CrossRef]
- Jin, S.; Ji, C.; Yan, C.; Xing, J. TFT-LCD mura defect detection using DCT and the dual-γ piecewise exponential transform. Precis. Eng. 2018, 54, 371–378. [Google Scholar] [CrossRef]
- Fan, S.-K.S.; Chuang, Y.-C. Automatic detection of Mura defect in TFT-LCD based on regression diagnostics. Pattern Recognit. Lett. 2010, 31, 2397–2404. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, S.; Wu, H.; Xiong, B.; Pan, Y. Liquid crystal display defects in multiple backgrounds with visual real-time detection. J. Soc. Inf. Disp. 2021, 29, 547–560. [Google Scholar] [CrossRef]
- Wenqiang, X.; Huaixin, C.; Zhixi, W. Method for Detecting Gypsophila Defect of Display Screen Based on Human Visual Perception. In Proceedings of the 2021 18th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 17–19 December 2021. [Google Scholar]
- Torres, G.M.; Souza, A.S.; Ferreira, D.A.; Júnior, L.C.; Ouchi, K.Y.; Valadão, M.D.; Silva, M.O.; Cavalcante, V.L.; Mattos EV, U.; Pereira, A.M. Automated Mura Defect Detection System on LCD Displays using Random Forest Classifier, In Proceedings of the 2021 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 10–12 January 2021.
- Liang, L.-Q.; Li, D.; Fu, X.; Zhang, W.-J. Touch screen defect inspection based on sparse representation in low resolution images. Multimed. Tools Appl. 2016, 75, 2655–2666. [Google Scholar] [CrossRef]
- Guo, C.; Ma, Q.; Zhang, L. Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008. [Google Scholar]
- Li, J.; Levine, M.D.; An, X.; Xu, X.; He, H. Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 996–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, S.; Shi, H. Fabric defect detection based on the saliency map construction of target-driven feature. J. Text. Inst. 2018, 109, 1133–1142. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.; Xiao, C.; Zhu, Q.; Lu, X.; Zhang, H.; Ge, J.; Zhao, H. Automated visual inspection of glass bottle bottom with saliency detection and template matching. IEEE Trans. Instrum. Meas. 2019, 68, 4253–4267. [Google Scholar] [CrossRef]
- Guan, S. Fabric defect delaminating detection based on visual saliency in HSV color space. J. Text. Inst. 2018, 109, 1560–1573. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, X. Fabric defect detection based on information entropy and frequency domain saliency. Vis. Comput. 2021, 37, 515–528. [Google Scholar] [CrossRef]
- Engel, S.; Zhang, X.; Wandell, B. Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature 1997, 388, 68–71. [Google Scholar] [CrossRef]
- Bylinskii, Z.; Judd, T.; Oliva, A.; Torralba, A.; Durand, F. What do different evaluation metrics tell us about saliency models? IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 740–757. [Google Scholar] [CrossRef] [Green Version]
- Turaga, D.S.; Chen, Y.; Caviedes, J. No reference PSNR estimation for compressed pictures. Signal Processing Image Commun. 2004, 19, 173–184. [Google Scholar] [CrossRef]
- Marmolin, H. Subjective MSE measures. IEEE Trans. Syst. Man Cybern. 1986, 16, 486–489. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Yuan, D.; Chen, H. Infrared small target detection based on local intensity and gradient properties. Infrared Phys. Technol. 2018, 89, 88–96. [Google Scholar] [CrossRef]
Type 1 | Type 2 | Type 3 | |
---|---|---|---|
MSE | 37.40 | 32.56 | 50.73 |
PSNR (dB) | 32.40 | 33.00 | 31.07 |
1 | 2 | 3 | ||||
---|---|---|---|---|---|---|
SCRG | BSF | SCRG | BSF | SCRG | BSF | |
RGB | 2.84 | 3.02 | 2.81 | 3.01 | 2.90 | 3.01 |
Lab | 0.73 | 224.49 | 0.50 | 221.27 | 0.73 | 9200.90 |
Entropy H | 1.45 | 40.86 | 1.58 | 35.83 | 1.55 | 20.00 |
HSV | 2.89 | 548.11 | 3.10 | 568.41 | 1.89 | 639.49 |
RGBY | 0.99 | 70.57 | 0.62 | 36.71 | 1.02 | 25.43 |
Type 1 | Type 2 | Type 3 | |
---|---|---|---|
TDR (%) | 96.7 | 100 | 92.3 |
FDR (%) | 7.6 | 11.8 | 4.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, W.; Chen, H.; Wang, Z.; Liu, X.; Liu, B.; Shuai, L. Crosstalk Defect Detection Method Based on Salient Color Channel Frequency Domain Filtering. Sensors 2022, 22, 5426. https://doi.org/10.3390/s22145426
Xie W, Chen H, Wang Z, Liu X, Liu B, Shuai L. Crosstalk Defect Detection Method Based on Salient Color Channel Frequency Domain Filtering. Sensors. 2022; 22(14):5426. https://doi.org/10.3390/s22145426
Chicago/Turabian StyleXie, Wenqiang, Huaixin Chen, Zhixi Wang, Xing Liu, Biyuan Liu, and Lingyu Shuai. 2022. "Crosstalk Defect Detection Method Based on Salient Color Channel Frequency Domain Filtering" Sensors 22, no. 14: 5426. https://doi.org/10.3390/s22145426
APA StyleXie, W., Chen, H., Wang, Z., Liu, X., Liu, B., & Shuai, L. (2022). Crosstalk Defect Detection Method Based on Salient Color Channel Frequency Domain Filtering. Sensors, 22(14), 5426. https://doi.org/10.3390/s22145426