A Demand-Centric Repositioning Strategy for Bike-Sharing Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Exploratory Data Analysis
2.3. Demand Scaling
2.4. Station Clustering
2.5. Repositioning Strategy
3. Results
3.1. Cluster Visualization
3.2. Performance Measurement
3.3. Simulation Result
Algorithm 1. Pseudocode for DCRS simulation and performance measurements | |
Parameters: | Cs: The Maximum Capacity of a Station s |
Decision_Interval(s): The Decision Interval of a Station s | |
Target (t0): The Targeted Value at Time t0 | |
1: | Low, Target, Up = Decision_Interval(s) |
2: | num_bikes = Target[t0] |
3: | net_traffic = arrivals − departures |
4: | lostdep, lostarr = 0, 0 |
5: | alert+, alert− = 0, 0 |
6: | rebalance+, rebalance− = 0, 0 |
7: | interval_size = 0 |
8: | for each time t do |
9: | num_bikes += net_traffic[t] |
10: | lostdep = max(0, num_bikes − Low[t]) |
11: | lostarr = max(0, num_bikes + Up[t] − Cs) |
12: | interval_size[t] = Up[t] − Low[t] |
13: | if num_bikes < Low[t] then |
14: | alert+ += 1 |
15: | rebalance+ += Target[t] − num_bikes |
16: | num_bikes = Target[t] |
17: | else if num_bikes > Up[t] then |
18: | alert− += 1 |
19: | rebalance- += num_bikes − Target[t] |
20: | num_bikes = Target[t] |
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alavi, A.H.; Jiao, P.; Buttlar, W.G.; Lajnef, N. Internet of Things-Enabled Smart Cities: State-of-the-Art and Future Trends. Measurement 2018, 129, 589–606. [Google Scholar] [CrossRef]
- Sánchez-Vergara, J.I.; Ginieis, M.; Papaoikonomou, E. The Emergence of the Sharing City: A Systematic Literature Review to Understand the Notion of The Sharing City and Explore Future Research Paths. J. Clean. Prod. 2021, 295, 126448. [Google Scholar] [CrossRef]
- Eren, E.; Uz, V.E. A Review on Bike-Sharing: The Factors Affecting Bike-Sharing Demand. Sustain. Cities Soc. 2020, 54, 101882. [Google Scholar] [CrossRef]
- Faghih-Imani, A.; Eluru, N. Incorporating the Impact of Spatio-Temporal Interactions on Bicycle Sharing System Demand: A Case Study of New York Citibike System. J. Transp. Geogr. 2016, 54, 218–227. [Google Scholar] [CrossRef]
- Morton, C. The Demand for Cycle Sharing: Examining the Links between Weather Conditions, Air Quality Levels, and Cycling Demand for Regular and Casual Users. J. Transp. Geogr. 2020, 88, 102854. [Google Scholar] [CrossRef]
- Chiariotti, F.; Pielli, C.; Zanella, C.; Zorzi, M. A Dynamic Approach to Rebalancing Bike-Sharing Systems. Sensors 2018, 18, 512. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Ji, Y.; Yuan, Y.; Oort, N.V.; Jin, Y.; Hoogendoorn, S. A Comparison in Travel Patterns and Determinants of User Demand between Docked and Dockless Bike-Sharing Systems Using Multi-Sourced Data. Transp. Res. Part A Policy Pract. 2020, 139, 148–173. [Google Scholar] [CrossRef]
- Hu, S.; Xiong, C.; Liu, Z.; Zhang, L. Examining Spatiotemporal Changing Patterns of Bike-Sharing Usage during COVID-19 Pandemic. J. Transp. Geogr. 2021, 91, 102997. [Google Scholar] [CrossRef] [PubMed]
- Xinwei, M.; Ruiming, C.; Yuchuan, J. Spatiotemporal Clustering Analysis of Bicycle Sharing System with Data Mining Approach. Information 2019, 10, 163. [Google Scholar]
- Díaz, J.J.V.; Pozo, R.F.; González, A.B.R.; Wilby, M.R.; Ávila, C.S. Hierarchical Agglomerative Clustering of Bicycle Sharing Stations Based on Ultra-Light Edge Computing. Sensors 2020, 20, 3550. [Google Scholar] [CrossRef]
- Fontes, T.; Arantes, M.; Figueiredo, P.V.; Novais, P. Bike-Sharing Docking Stations Identification Using Clustering Methods in Lisbon City. In Proceedings of the 18th International Symposium on Distributed Computing and Artificial Intelligence, Salamanca, Spain, 6–8 October 2021. [Google Scholar]
- Fontes, T.; Arantes, M.; Figueiredo, P.V.; Novais, P. A Cluster-Based Approach Using Smartphone Data for Bike-Sharing Docking Stations Identification: Lisbon Case Study. Smart Cities 2022, 5, 251–275. [Google Scholar] [CrossRef]
- Huang, J.; Tan, Q.; Li, H.; Li, A.; Huang, L. Monte Carlo Tree Search for Dynamic Bike Repositioning in Bike-Sharing Systems. Appl. Intell. 2022, 52, 4610–4625. [Google Scholar] [CrossRef]
- Wang, X.; Sun, H.; Zhang, S.; Lv, Y.; Li, T. Bike Sharing Rebalancing Problem with Variable Demand. Phys. A 2022, 591, 126766. [Google Scholar] [CrossRef]
- Bordagaray, M.; Dell’Olio, L.; Fonzone, A.; Ibeas, A. Capturing the Conditions That Introduce Systematic Variation in Bike-Sharing Travel Behavior Using Data Mining Techniques. Transp. Res. Part C Emerg. Technol. 2016, 71, 231–248. [Google Scholar] [CrossRef]
- Liu, X.; Pelechrinis, K. Excess Demand Prediction for Bike Sharing Systems. PLoS ONE 2021, 16, e0252894. [Google Scholar] [CrossRef] [PubMed]
- Hulot, P.; Aloise, D.; Jena, S. Towards Station-Level Demand Prediction for Effective Rebalancing in Bike-Sharing Systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018. [Google Scholar]
- Collini, E.; Nesi, P.; Pantaleo, G. Deep Learning for Short-Term Prediction of Available Bikes on Bike-Sharing Stations. IEEE Access 2021, 9, 124337–124347. [Google Scholar] [CrossRef]
- Boufidis, N.; Nikiforiadis, A.; Chrysostomou, K.; Aifadopoulou, G. Development of A Station-Level Demand Prediction and Visualization Tool to Support Bike-Sharing Systems’ Operators. Transport. Res. Proc. 2020, 47, 51–58. [Google Scholar] [CrossRef]
- Qiao, S.; Han, N.; Huang, J.; Yue, K.; Mao, R.; Shu, H.; He, Q.; Wu, X. A Dynamic Convolutional Neural Network Based Shared-Bike Demand Forecasting Model. ACM Trans. Intell. Syst. Technol. 2021, 12, 1–24. [Google Scholar] [CrossRef]
- Tuli, F.M.; Mitra, S.; Crews, M.B. Factors Influencing the Usage of Shared E-Scooters in Chicago. Transp. Res. Part A Policy Pract. 2021, 154, 164–185. [Google Scholar] [CrossRef]
- Kou, Z.; Cai, H. Understanding bike sharing travel patterns: An Analysis of Trip Data from Eight Cities. Phys. A 2019, 515, 785–797. [Google Scholar] [CrossRef]
- Yan, Q.; Gao, K.; Sun, L.; Shao, M. Spatio-Temporal Usage Patterns of Dockless Bike-Sharing Service Linking to A Metro Station: A Case Study in Shanghai, China. Sustainability 2020, 12, 851. [Google Scholar] [CrossRef] [Green Version]
- Alaoui, E.A.A.; Tekouabou, S.C.K. Intelligent Management of Bike Sharing in Smart Cities Using Machine Learning and Internet of Things. Sustain. Cities Soc. 2021, 67, 102702. [Google Scholar] [CrossRef]
- Cruz, F.; Subramanian, A.; Bruck, B.P.; Iori, M. A Heuristic Algorithm for A Single Vehicle Static Bike Sharing Rebalancing Problem. Comput. Oper. Res. 2017, 79, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Meng, L.; Zhao, F.; Zhang, C.; Guo, H.; Tian, Y.; Tong, W.; Sutherland, J.W. An Improved General Variable Neighborhood Search for a Static Bike-Sharing Rebalancing Problem Considering the Depot Inventory. Expert Syst. Appl. 2020, 160, 113752. [Google Scholar] [CrossRef]
- Contardo, C.; Morency, C.; Rousseau, L.-M. Balancing a Dynamic Public Bike-Sharing System; Cirrelt: Montreal, QC, Canada, 2012; Volume 4. [Google Scholar]
- Schuijbroek, J.; Hampshire, R.C.; Hoeve, W.-J.V. Inventory Rebalancing and Vehicle Routing in Bike Sharing Systems. Eur. J. Oper. Res. 2017, 257, 992–1004. [Google Scholar] [CrossRef] [Green Version]
- Legros, B. Dynamic Repositioning Strategy in A Bike-Sharing System; How to Prioritize and How to Rebalance a Bike Station. Eur. J. Oper. Res. 2019, 272, 740–753. [Google Scholar] [CrossRef]
- Vallez, C.M.; Castro, M.; Contreras, D. Challenges and Opportunities in Dock-Based Bike-Sharing Rebalancing: A Systematic Review. Sustainability 2021, 13, 1829. [Google Scholar] [CrossRef]
- Hu, Z.; Huang, K.; Zhang, E.; Ge, Q.; Yang, X. Rebalancing Strategy for Bike-Sharing Systems Based on the Model of Level of Detail. J. Adv. Transp. 2021, 2021, 3790888. [Google Scholar] [CrossRef]
- Cipriano, M.; Colomba, L.; Garza, P. A Data-Driven Based Dynamic Rebalancing Methodology for Bike Sharing Systems. Appl. Sci. 2021, 11, 6967. [Google Scholar] [CrossRef]
- Mehdizadeh Dastjerdi, A.; Morency, C. Bike-Sharing Demand Prediction at Community Level under COVID-19 Using Deep Learning. Sensors 2022, 22, 1060. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yin, Y.; Jin, Y.; He, M.; Zhu, M. Short-Term Prediction of Bike-Sharing Demand Using Multi-Source Data: A Spatial-Temporal Graph Attentional LSTM Approach. Appl. Sci. 2022, 12, 1161. [Google Scholar] [CrossRef]
- Citi Bike System Data. Available online: https://ride.citibikenyc.com/system-data (accessed on 1 June 2022).
- Tyndall, J. Bus Quality Improvements and Local Commuter Mode Share. Transp. Res. A Policy Pract. 2018, 113, 173–183. [Google Scholar] [CrossRef]
- The Open Bus. Available online: https://www.theopenbus.com (accessed on 1 June 2022).
- Federal Holidays in New York in 2018. Available online: https://www.officeholidays.com/countries/usa/new-york/2018 (accessed on 1 June 2022).
Cluster Names | |||||||
---|---|---|---|---|---|---|---|
A (Stable) | B (MRtARn-LD 1) | C (MRnARt-LD) | D (MRtARn-HD) | E (MRnARt-HD 2) | |||
Peak Season | Working day (Figure 9a) | Number of Stations | 375 | 109 | 132 | 11 | - |
Avg. of Station Capacities | 29.09 | 35.15 | 32.64 | 43.54 | - | ||
Avg. Sum of RRDs | 125.30 | 272.58 | 213.12 | 436.83 | - | ||
Non-working day (Figure 9b) | Number of Stations | 465 | 74 | 88 | - | - | |
Avg. of Station Capacities | 29.88 | 37.32 | 32.67 | - | - | ||
Avg. Sum of RRDs | 133.20 | 347.20 | 250.08 | - | - | ||
Dull Season | Working day (Figure 9c) | Number of Stations | 413 | 118 | 92 | 3 | 1 |
Avg. of Station Capacities | 28.69 | 36.54 | 34.94 | 44.33 | 19 | ||
Avg. Sum of RRDs | 61.51 | 157.05 | 156.87 | 339.06 | 405.59 | ||
Non-working day (Figure 9d) | Number of Stations | 508 | 58 | 61 | - | - | |
Avg. of Station Capacities | 30.07 | 38.24 | 33.40 | - | - | ||
Avg. Sum of RRDs | 73.32 | 205.46 | 174.15 | - | - |
Cluster Name | A (Stable) | B (MRtARn-LD) | C (MRnARt-LD) | D (MRtARn-HD) | ||||
---|---|---|---|---|---|---|---|---|
Strategy | DCRS | SL | DCRS | SL | DCRS | SL | DCRS | SL |
lostdep | 39.45 | 41.46 | 73.03 | 75.06 | 63.98 | 64.93 | 146.33 | 152.41 |
lostarr | 20.47 | 39.61 | 49.71 | 80.26 | 31.87 | 56.06 | 109.45 | 159.36 |
mean alert+ | 0.82 | 0.85 | 2.60 | 2.73 | 2.25 | 2.24 | 7.54 | 8.27 |
mean alert− | 0.81 | 0.82 | 2.36 | 2.45 | 2.26 | 2.24 | 6.38 | 6.86 |
mean rebalance+ | 10.72 | 10.62 | 38.69 | 38.11 | 32.18 | 32.27 | 156.35 | 160.98 |
mean rebalance− | 11.07 | 10.98 | 34.18 | 33.53 | 36.21 | 36.38 | 149.17 | 153.68 |
mean interval_size | 25.87 | 26.32 | 30.27 | 29.89 | 27.24 | 27.02 | 32.82 | 31.31 |
Cluster Name | A (Stable) | B (MRtARn-LD) | C (MRnARt-LD) | D (MRtARn-HD) | E (MRnARt-HD) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Strategy | DCRS | SL | DCRS | SL | DCRS | SL | DCRS | SL | DCRS | SL |
lostdep | 17.16 | 23.22 | 36.31 | 48.42 | 40.02 | 50.94 | 93.51 | 120.12 | 228.78 | 196.28 |
lostarr | 7.03 | 22.32 | 21.96 | 53.36 | 17.65 | 45.02 | 75.59 | 127.62 | 169.61 | 181.81 |
mean alert+ | 0.37 | 0.35 | 1.47 | 1.39 | 1.34 | 1.22 | 6.13 | 6.20 | 11.57 | 14.97 |
mean alert− | 0.40 | 0.38 | 1.28 | 1.17 | 1.43 | 1.33 | 5.51 | 5.11 | 10.10 | 12.69 |
mean rebalance+ | 4.61 | 4.51 | 23.11 | 23.13 | 21.42 | 21.35 | 135.95 | 141.16 | 184.34 | 193.69 |
mean rebalance− | 5.26 | 5.17 | 19.26 | 19.26 | 24.19 | 24.18 | 120.73 | 125.88 | 176.68 | 185.98 |
mean interval_size | 26.04 | 27.38 | 32.24 | 33.19 | 29.72 | 30.36 | 35.22 | 34.46 | 13.16 | 10.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-C. A Demand-Centric Repositioning Strategy for Bike-Sharing Systems. Sensors 2022, 22, 5580. https://doi.org/10.3390/s22155580
Lin Y-C. A Demand-Centric Repositioning Strategy for Bike-Sharing Systems. Sensors. 2022; 22(15):5580. https://doi.org/10.3390/s22155580
Chicago/Turabian StyleLin, Ying-Chih. 2022. "A Demand-Centric Repositioning Strategy for Bike-Sharing Systems" Sensors 22, no. 15: 5580. https://doi.org/10.3390/s22155580
APA StyleLin, Y. -C. (2022). A Demand-Centric Repositioning Strategy for Bike-Sharing Systems. Sensors, 22(15), 5580. https://doi.org/10.3390/s22155580