Direct Conversion X-ray Detector with Micron-Scale Pixel Pitch for Edge-Illumination and Propagation-Based X-ray Phase-Contrast Imaging
Abstract
:1. Introduction
2. Methods
2.1. Theory and Model
2.2. Simulation and Verification
3. Comparison of High-Resolution PB-XPCi and EI-XPCi
3.1. Direct vs. Indirect Conversion Detector
3.2. PB-XPCi
3.3. EI-XPCi
3.4. Effect of Absorption Mask Thickness Variation and Mechanical Vibration in a High-Resolution EI-XPCi System
- A 39 m pixel size system with a pre-sample mask with 4.68 m and 31.2 m aperture and period; a detector mask with 9.75 m and 39 m aperture and period; of 160 cm; and equal to 40 cm.
- A 7.8 m pixel size system with a pre-sample mask with 1.56 m and 6.24 m aperture and period; a detector mask with 1.17 m and 7.8 m aperture and period; of 18 cm; and equal of 4.5 cm.
4. Current XPCi Technologies
4.1. Propagation-Based X-ray Phase-Contrast Imaging System
4.2. Edge-Illumination X-ray Phase-Contrast Imaging System
- Larger area fabrication (for application such as mammography, e.g., for a field of view of 10 × 10 cm or 15 × 15 cm).
- Acceptable uniformity across the absorption masks (no distortions and changes in the period and height).
- Two-dimensional high-aspect ratio structures (2D gratings) for sensitivity in the x and y direction.
Reference | X-ray Source, Energy or Potential | M1 Aperture, Period | M2 Aperture, Period | Detector, Pixel Pitch | |
---|---|---|---|---|---|
2017 [32] | Rigaku MM007, 35 kV | >160 cm | 16 m, 134 m | 20 m, 167 m | Anrad SMAM A-Se, 85 m |
2017 [33] | Rigaku MM007, 40 kV | 200 cm | 12 m, 48 m | 15 m, 62 m | Pixirad, 62 m |
2018 [34] | Hamamatsu L8121-03, 40 keV | 184 cm | — | — | Medipix3RX, 55 m |
2019 [35] | Rigaku MultiMax-9, 40 kV | 300 cm | 10 m, 79 m | 17 m, 98 m | PixiRad-2, 62 m |
2020 [36] | Rigaku MM007, 35 kV | 245 cm | 10 m, 79 m | 17 m, 98 m | Hamamatsu C9732DK-11, 100 m 1 |
2022 [37] | Rigaku MM007, 40 kV | 100 cm | - | 20 m, 98 m | Hamamatsu C9732DK, 50 m |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Endrizzi, M. X-ray phase-contrast imaging. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 878, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Taba, S.T.; Gureyev, T.E.; Alakhras, M.; Lewis, S.; Lockie, D.; Brennan, P.C. X-ray phase-contrast technology in breast imaging: Principles, options, and clinical application. Am. J. Roentgenol. 2018, 211, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Bravin, A.; Coan, P.; Suortti, P. X-ray phase-contrast imaging: From pre-clinical applications towards clinics. Phys. Med. Biol. 2012, 58, R1–R35. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, S.; Gureyev, T.E.; Gao, D.; Pogany, A.; Stevenson, A. Phase-contrast imaging using polychromatic hard X-rays. Nature 1996, 384, 335–338. [Google Scholar] [CrossRef]
- Olivo, A.; Speller, R. A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources. Appl. Phys. Lett. 2007, 91, 074106. [Google Scholar] [CrossRef] [Green Version]
- Marenzana, M.; Hagen, C.K.; Borges, P.D.N.; Endrizzi, M.; Szafraniec, M.B.; Ignatyev, K.; Olivo, A. Visualization of small lesions in rat cartilage by means of laboratory-based X-ray phase contrast imaging. Phys. Med. Biol. 2012, 57, 8173. [Google Scholar] [CrossRef]
- Lohr, R.L.; Scott, C.C.; Pil-Ali, A.; Karim, K.S. A comparison of phase retrieval methods for propagation-based contrast X-ray imaging with polychromatic sources. In Medical Imaging 2020: Physics of Medical Imaging; International Society for Optics and Photonics (SPIE): Bellingham, DC, USA, 2020; Volume 11312, p. 1131251. [Google Scholar]
- Burvall, A.; Lundström, U.; Takman, P.A.; Larsson, D.H.; Hertz, H.M. Phase retrieval in X-ray phase-contrast imaging suitable for tomography. Opt. Express 2011, 19, 10359–10376. [Google Scholar] [CrossRef]
- Withers, P.J.; Bouman, C.; Carmignato, S.; Cnudde, V.; Grimaldi, D.; Hagen, C.K.; Maire, E.; Manley, M.; Du Plessis, A.; Stock, S.R. X-ray computed tomography. Nat. Rev. Methods Prim. 2021, 1, 1–21. [Google Scholar] [CrossRef]
- Lohse, L.M.; Robisch, A.L.; Töpperwien, M.; Maretzke, S.; Krenkel, M.; Hagemann, J.; Salditt, T. A phase-retrieval toolbox for X-ray holography and tomography. J. Synchrotron Radiat. 2020, 27, 852–859. [Google Scholar] [CrossRef] [Green Version]
- Olivo, A.; Speller, R. Image formation principles in coded-aperture based X-ray phase contrast imaging. Phys. Med. Biol. 2008, 53, 6461. [Google Scholar] [CrossRef]
- Karim, K.S.; Scott, C.C. Method and System for High-Resolution X-ray Detection for Phase Contrast X-ray Imaging. U.S. Patent App. 16/050,354, 25 April 2019. [Google Scholar]
- Koch, A.; Raven, C.; Spanne, P.; Snigirev, A. X-ray imaging with submicrometer resolution employing transparent luminescent screens. JOSA A 1998, 15, 1940–1951. [Google Scholar] [CrossRef] [Green Version]
- Martin, T.; Koch, A. Recent developments in X-ray imaging with micrometer spatial resolution. J. Synchrotron Radiat. 2006, 13, 180–194. [Google Scholar] [CrossRef] [Green Version]
- Bech, M.; Bunk, O.; David, C.; Kraft, P.; Brönnimann, C.; Eikenberry, E.; Pfeiffer, F. X-ray imaging with the PILATUS 100k detector. Appl. Radiat. Isot. 2008, 66, 474–478. [Google Scholar] [CrossRef]
- Kasap, S.; Frey, J.B.; Belev, G.; Tousignant, O.; Mani, H.; Laperriere, L.; Reznik, A.; Rowlands, J.A. Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes. Phys. Status Solidi 2009, 246, 1794–1805. [Google Scholar] [CrossRef]
- Bidola, P.; Morgan, K.; Willner, M.; Fehringer, A.; Allner, S.; Prade, F.; Pfeiffer, F.; Achterhold, K. Application of sensitive, high-resolution imaging at a commercial lab-based X-ray micro-CT system using propagation-based phase retrieval. J. Microsc. 2017, 266, 211–220. [Google Scholar] [CrossRef]
- Cochard, H.; Delzon, S.; Badel, E. X-ray microtomography (micro-CT): A reference technology for high-resolution quantification of xylem embolism in trees. Plant Cell Environ. 2015, 38, 201–206. [Google Scholar] [CrossRef]
- Fonseca, M.d.C.; Araujo, B.H.S.; Dias, C.S.B.; Archilha, N.L.; Neto, D.P.A.; Cavalheiro, E.; Westfahl, H.; da Silva, A.J.R.; Franchini, K.G. High-resolution synchrotron-based X-ray microtomography as a tool to unveil the three-dimensional neuronal architecture of the brain. Sci. Rep. 2018, 8, 12074. [Google Scholar] [CrossRef]
- Parsafar, A.; Scott, C.C.; El-Falou, A.; Levine, P.M.; Karim, K.S. Direct-Conversion CMOS X-ray Imager With 5.6 μm × 6.25 μm Pixels. IEEE Electron Device Lett. 2015, 36, 481–483. [Google Scholar] [CrossRef]
- Scott, C.C.; Abbaszadeh, S.; Ghanbarzadeh, S.; Allan, G.; Farrier, M.; Cunningham, I.A.; Karim, K.S. Amorphous selenium direct detection CMOS digital X-ray imager with 25 micron pixel pitch. In Medical Imaging 2014: Physics of Medical Imaging; International Society for Optics and Photonics (SPIE): Bellingham, DC, USA, 2014; Volume 9033, p. 90331G. [Google Scholar]
- Scott, C.C.; Farrier, M.; Li, Y.; Laxer, S.; Ravi, P.; Kenesei, P.; Wojcik, M.J.; Miceli, A.; Karim, K.S. High-energy micrometre-scale pixel direct conversion X-ray detector. J. Synchrotron Radiat. 2021, 28, 1081–1089. [Google Scholar] [CrossRef]
- Millard, T.; Endrizzi, M.; Ignatyev, K.; Hagen, C.; Munro, P.; Speller, R.; Olivo, A. Method for automatization of the alignment of a laboratory based X-ray phase contrast edge illumination system. Rev. Sci. Instrum. 2013, 84, 083702. [Google Scholar] [CrossRef]
- Scott, C. Hybrid Semiconductor Detectors for High Spatial Resolution Phase-Contrast X-ray Imaging. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2019. [Google Scholar]
- Vittoria, F.A.; Diemoz, P.C.; Endrizzi, M.; Rigon, L.; Lopez, F.C.; Dreossi, D.; Munro, P.R.; Olivo, A. Strategies for efficient and fast wave optics simulation of coded-aperture and other X-ray phase-contrast imaging methods. Appl. Opt. 2013, 52, 6940–6947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundström, U. Phase-Contrast X-ray Carbon Dioxide Angiography. Ph.D. Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2014. [Google Scholar]
- Siewerdsen, J.; Waese, A.; Moseley, D.; Richard, S.; Jaffray, D. Spektr: A computational tool for X-ray spectral analysis and imaging system optimization. Med. Phys. 2004, 31, 3057–3067. [Google Scholar] [CrossRef] [PubMed]
- Palermo, F.; Pieroni, N.; Maugeri, L.; Provinciali, G.B.; Sanna, A.; Massimi, L.; Catalano, M.; Olbinado, M.P.; Bukreeva, I.; Fratini, M.; et al. X-ray Phase Contrast Tomography Serves Preclinical Investigation of Neurodegenerative Diseases. Front. Neurosci. 2020, 14, 584161. [Google Scholar] [CrossRef] [PubMed]
- Karim, K.S.; Scott, C.C. Method and System for High-Resolution X-ray Detection for Phase Contrast X-ray Imaging. U.S. Patent 10,914,689, 9 February 2021. [Google Scholar]
- Romano, L.; Vila-Comamala, J.; Schift, H.; Stampanoni, M.; Jefimovs, K. Hot embossing of Au-and Pb-based alloys for X-ray grating fabrication. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2017, 35, 06G302. [Google Scholar] [CrossRef] [Green Version]
- Romano, L.; Vila-Comamala, J.; Kagias, M.; Vogelsang, K.; Schift, H.; Stampanoni, M.; Jefimovs, K. High aspect ratio metal microcasting by hot embossing for X-ray optics fabrication. Microelectron. Eng. 2017, 176, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Kallon, G.; Diemoz, P.; Vittoria, F.; Basta, D.; Endrizzi, M.; Olivo, A. Comparing signal intensity and refraction sensitivity of double and single mask edge illumination lab-based X-ray phase contrast imaging set-ups. J. Phys. D Appl. Phys. 2017, 50, 415401. [Google Scholar] [CrossRef] [Green Version]
- Zamir, A.; Diemoz, P.C.; Vittoria, F.A.; Hagen, C.K.; Endrizzi, M.; Olivo, A. Edge illumination X-ray phase tomography of multi-material samples using a single-image phase retrieval algorithm. Opt. Express 2017, 25, 11984–11996. [Google Scholar] [CrossRef]
- Vespucci, S.; Lewis, C.; Park, C.S.; Das, M. Examining phase contrast sensitivity to signal location and tissue thickness in breast imaging. In Medical Imaging 2018: Physics of Medical Imaging; International Society for Optics and Photonics: Bellingham, DC, USA, 2018; Volume 10573, p. 1057324. [Google Scholar]
- Kallon, G.; Vittoria, F.; Buchanan, I.; Endrizzi, M.; Olivo, A. An experimental approach to optimising refraction sensitivity for lab-based edge illumination phase contrast set-ups. J. Phys. D Appl. Phys. 2020, 53, 195404. [Google Scholar] [CrossRef]
- Havariyoun, G.; Vittoria, F.A.; Hagen, C.K.; Basta, D.; Kallon, G.K.; Endrizzi, M.; Massimi, L.; Munro, P.; Hawker, S.; Smit, B.; et al. A compact system for intraoperative specimen imaging based on edge illumination X-ray phase contrast. Phys. Med. Biol. 2019, 64, 235005. [Google Scholar] [CrossRef]
- Massimi, L.; Kallon, G.K.; Buchanan, I.; Endrizzi, M.; Dobrosz, P.; Brooks, R.; Brau, D.; Bullard, E.; Olivo, A. Replacing the detector mask with a structured scintillator in edge-illumination X-ray phase contrast imaging. J. Appl. Phys. 2022, 131, 204501. [Google Scholar] [CrossRef]
- Kagias, M.; Wang, Z.; Guzenko, V.A.; David, C.; Stampanoni, M.; Jefimovs, K. Fabrication of Au gratings by seedless electroplating for X-ray grating interferometry. Mater. Sci. Semicond. Process. 2019, 92, 73–79. [Google Scholar] [CrossRef]
- Noda, D.; Tanaka, M.; Shimada, K.; Yashiro, W.; Momose, A.; Hattori, T. Fabrication of large area diffraction grating using LIGA process. Microsyst. Technol. 2008, 14, 1311–1315. [Google Scholar] [CrossRef]
- Mohr, J.; Grund, T.; Kunka, D.; Kenntner, J.; Leuthold, J.; Meiser, J.; Schulz, J.; Walter, M. High aspect ratio gratings for X-ray phase contrast imaging. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2012; Volume 1466, pp. 41–50. [Google Scholar]
- Ehrfeld, W.; Lehr, H. Deep X-ray lithography for the production of three-dimensional microstructures from metals, polymers and ceramics. Radiat. Phys. Chem. 1995, 45, 349–365. [Google Scholar] [CrossRef]
- Guckel, H. High-aspect-ratio micromachining via deep X-ray lithography. Proc. IEEE 1998, 86, 1586–1593. [Google Scholar] [CrossRef]
- Kenntner, J.; Altapova, V.; Grund, T.; Pantenburg, F.J.; Meiser, J.; Baumbach, T.; Mohr, J. Fabrication and characterization of analyzer gratings with high aspect ratios for phase contrast imaging using a Talbot interferometer. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2012; Volume 1437, pp. 89–93. [Google Scholar]
- David, C.; Bruder, J.; Rohbeck, T.; Grünzweig, C.; Kottler, C.; Diaz, A.; Bunk, O.; Pfeiffer, F. Fabrication of diffraction gratings for hard X-ray phase contrast imaging. Microelectron. Eng. 2007, 84, 1172–1177. [Google Scholar] [CrossRef]
- Pil-Ali, A.; Soltani, M.; Adnani, S.; Cui, B.; Karim, K.S. A novel multi-layer grating structure for X-ray phase-contrast imaging. In Medical Imaging 2022: Physics of Medical Imaging; SPIE: Bellingham, DC, USA, 2022; Volume 12031, pp. 898–902. [Google Scholar]
- Pil-Ali, A.; Soltani, M.; Adnani, S.; Kayaharman, M.; Poudineh, M.; Cui, B.; Karim, K.S. Improving adhesion quality of SU-8 to gold thin film for absorption grating fabrication in X-ray phase-contrast imaging. In Medical Imaging 2022: Physics of Medical Imaging; SPIE: Bellingham, DC, USA, 2022; Volume 12031, pp. 913–918. [Google Scholar]
- Pil-Ali, A.; Adnani, S.; Gavirneni, P.; Shin, S.; Sadeghimakki, B.; Poudineh, M.; Wong, W.; Karim, K.S. Self-aligned fabrication of high-aspect ratio high-resolution X-ray gratings. In Medical Imaging 2022: Physics of Medical Imaging; SPIE: Bellingham, DC, USA, 2022; Volume 12031, pp. 903–907. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pil-Ali, A.; Adnani, S.; Scott, C.C.; Karim, K.S. Direct Conversion X-ray Detector with Micron-Scale Pixel Pitch for Edge-Illumination and Propagation-Based X-ray Phase-Contrast Imaging. Sensors 2022, 22, 5890. https://doi.org/10.3390/s22155890
Pil-Ali A, Adnani S, Scott CC, Karim KS. Direct Conversion X-ray Detector with Micron-Scale Pixel Pitch for Edge-Illumination and Propagation-Based X-ray Phase-Contrast Imaging. Sensors. 2022; 22(15):5890. https://doi.org/10.3390/s22155890
Chicago/Turabian StylePil-Ali, Abdollah, Sahar Adnani, Christopher C. Scott, and Karim S. Karim. 2022. "Direct Conversion X-ray Detector with Micron-Scale Pixel Pitch for Edge-Illumination and Propagation-Based X-ray Phase-Contrast Imaging" Sensors 22, no. 15: 5890. https://doi.org/10.3390/s22155890
APA StylePil-Ali, A., Adnani, S., Scott, C. C., & Karim, K. S. (2022). Direct Conversion X-ray Detector with Micron-Scale Pixel Pitch for Edge-Illumination and Propagation-Based X-ray Phase-Contrast Imaging. Sensors, 22(15), 5890. https://doi.org/10.3390/s22155890