Circuit Techniques to Improve Low-Light Characteristics and High-Accuracy Evaluation System for CMOS Image Sensor
Abstract
:1. Introduction
2. Design Issues of Conventional Column ADCs and Corresponding Countermeasures
3. Evaluation Method
3.1. Common Evaluation Method of Image Sensors and Evaluation Issues
3.2. Proposed Evaluation System
4. Measurement Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schanz, M.; Nitta, C.; Bussmann, A.; Hosticka, B.J.; Wertheimer, R.K. A high-dynamic-range CMOS image sensor for automotive applications. IEEE J. Solid-State Circuits 2000, 35, 932–938. [Google Scholar] [CrossRef]
- Okura, S.; Nishikido, O.; Sadanaga, Y.; Kosaka, Y.; Araki, N.; Ueda, K. A 3.7 M-Pixel 1300-fps CMOS Image Sensor With 5.0 G-Pixel/s High-Speed Readout Circuit. IEEE J. Solid-State Circuits 2015, 50, 1016–1024. [Google Scholar] [CrossRef]
- Seo, M.-W.; Takasawa, T.; Yasutomi, K.; Kagawa, K.; Kawahito, S. A low-noise high-sensitivity CMOS image sensor for scientific and industrial applications. In Proceedings of the SENSORS, 2014 IEEE, Valencia, Spain, 2–5 November 2014; pp. 2163–2166. [Google Scholar] [CrossRef]
- Bong, K.; Choi, S.; Kim, C.; Han, D.; Yoo, H.-J. A Low-Power Convolutional Neural Network Face Recognition Processor and a CIS Integrated With Always-on Face Detector. IEEE J. Solid-State Circuits 2017, 53, 115–123. [Google Scholar] [CrossRef]
- Le, V.L.; Yoo, T.; Kim, J.E.; Baek, K.-H.; Kim, T.T.-H. A 213.7-µW Gesture Sensing System-On-Chip With Self-Adaptive Motion Detection and Noise-Tolerant Outer-most-Edge-Based Feature Extraction in 65 nm. IEEE Solid-State Circuits Lett. 2019, 2, 123–126. [Google Scholar] [CrossRef]
- Park, I.; Jo, W.; Park, C.; Park, B.; Cheon, J.; Chae, Y. A 640 × 640 Fully Dynamic CMOS Image Sensor for Always-On Object Recognition. In Proceedings of the 2019 Symposium on VLSI Circuits, Kyoto, Japan, 9–14 June 2019; pp. C214–C215. [Google Scholar]
- Morishita, F.; Kato, N.; Okubo, S.; Toi, T.; Hiraki, M.; Otani, S.; Abe, H.; Shinohara, Y.; Kondo, H. A CMOS Image Sensor and an AI Accelerator for Realizing Edge-Computing-Based Surveillance Camera Systems. In Proceedings of the 2021 Symposium on VLSI Circuits, Kyoto, Japan, 13–19 June 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Song, H.; Oh, S.; Salinas, J.; Park, S.-Y.; Yoon, E. A 5.1 ms Low-Latency Face Detection Imager with In-Memory Charge-Domain Computing of Machine-Learning Classifiers. In Proceedings of the 2021 Symposium on VLSI Circuits, Kyoto, Japan, 13–19 June 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Kim, D.; Lee, S.; Park, D.; Piao, C.; Park, J.; Ahn, Y.; Cho, K.; Shin, J.; Song, S.M.; Kim, S.-J.; et al. Indirect Time-of-Flight CMOS Image Sensor With On-Chip Background Light Cancelling and Pseudo-Four-Tap/Two-Tap Hybrid Imaging for Motion Artifact Suppression. IEEE J. Solid-State Circuits 2020, 55, 2849–2865. [Google Scholar] [CrossRef]
- Keel, M.-S.; Jin, Y.-G.; Kim, Y.; Kim, D.; Kim, Y.; Bae, M.; Chung, B.; Son, S.; Kim, H.; An, T.; et al. A VGA Indirect Time-of-Flight CMOS Image Sensor With 4-Tap 7 µm Global-Shutter Pixel and Fixed-Pattern Phase Noise Self-Compensation. IEEE J. Solid-State Circuits 2019, 55, 889–897. [Google Scholar] [CrossRef]
- Niclass, C.; Soga, M.; Matsubara, H.; Ogawa, M.; Kagami, M. A 0.18 µm CMOS SoC for a 100 m-range 10 fps 20096-pixel time-of-flight depth sensor. In Proceedings of the 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, CA, USA, 17–21 February 2013; pp. 488–489. [Google Scholar] [CrossRef]
- Al Abbas, T.; Almer, O.; Hutchings, S.W.; Erdogan, A.T.; Gyongy, I.; Dutton, N.A.; Henderson, R.K. A 128 × 120 5-Wire 1.96 mm2 40 nm/90 nm 3D Stacked SPAD Time Resolved Image Sensor SoC for Microendoscopy. In Proceedings of the 2019 Symposium on VLSI Circuits, Kyoto, Japan, 9–14 June 2019. [Google Scholar] [CrossRef]
- Jang, J.; Lee, J.; Lee, K.-R.; Lee, J.; Kim, M.; Lee, Y.; Bae, J.; Yoo, H.-J. A Four-Camera VGA-Resolution Capsule Endoscope System With 80-Mb/s Body Channel Communication Transceiver and Sub-Centimeter Range Capsule Localization. IEEE J. Solid-State Circuits 2018, 54, 538–549. [Google Scholar] [CrossRef]
- Zhang, M.; Bermak, A.; Li, X.; Wang, Z. A low power CMOS image sensor design for wireless endoscopy capsule. In Proceedings of the 2008 IEEE Biomedical Circuits and Systems Conference, Baltimore, MD, USA, 20–22 November 2008; pp. 397–400. [Google Scholar] [CrossRef]
- Sakakibara, M.; Ogawa, K.; Sakai, S.; Tochigi, Y.; Honda, K.; Kikuchi, H.; Wada, T.; Kamikubo, Y.; Miura, T.; Nakamizo, M.; et al. A 6.9-µm Pixel-Pitch Back-Illuminated Global Shutter CMOS Image Sensor With Pixel-Parallel 14-Bit Subthreshold ADC. IEEE J. Solid-State Circuits 2018, 53, 3017–3025. [Google Scholar] [CrossRef]
- Seo, M.-W.; Chu, M.; Jung, H.-Y.; Kim, S.; Song, J.; Lee, J.; Kim, S.-Y.; Lee, J.; Byun, S.-J.; Bae, D.; et al. A 2.6 e-rms Low-Random-Noise, 116.2 mW Low-Power 2-Mp Global Shutter CMOS Image Sensor with Pixel-Level ADC and In-Pixel Memory. In Proceedings of the 2021 Symposium on VLSI Technology, Kyoto, Japan, 13–19 June 2021. [Google Scholar]
- Han, J.; Cacho-Soblechero, M.; Douthwaite, M.; Georgiou, P. A Digital ISFET Sensor with In-Pixel ADC. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 22–28 May 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Goto, M.; Honda, Y.; Watabe, T.; Hagiwara, K.; Nanba, M.; Iguchi, Y.; Saraya, T.; Kobayashi, M.; Higurashi, E.; Toshiyoshi, H.; et al. Quarter Video Graphics Array Digital Pixel Image Sensing With a Linear and Wide-Dynamic-Range Response by Using Pixel-Wise 3-D Integration. IEEE Trans. Electron. Devices 2018, 66, 969–975. [Google Scholar] [CrossRef]
- Oike, Y.; Akiyama, K.; Hung, L.D.; Niitsuma, W.; Kato, A.; Sato, M.; Kato, Y.; Nakamura, W.; Shiroshita, H.; Sakano, Y.; et al. 8.3 M-Pixel 480-fps Global-Shutter CMOS Image Sensor with Gain-Adaptive Column ADCs and Chip-on-Chip Stacked Integration. IEEE J. Solid-State Circuits 2017, 52, 985–993. [Google Scholar] [CrossRef]
- Park, I.; Park, C.; Cheon, J.; Chae, Y. 5.4 A 76mW 500fps VGA CMOS Image Sensor with Time-Stretched Single-Slope ADCs Achieving 1.95 e− Random Noise. In Proceedings of the 2019 IEEE International Solid-State Circuits Conference—(ISSCC), San Francisco, CA, USA, 17–21 February 2019; pp. 100–102. [Google Scholar] [CrossRef]
- Nie, K.; Zha, W.; Shi, X.; Li, J.; Xu, J.; Ma, J. A Single Slope ADC With Row-Wise Noise Reduction Technique for CMOS Image Sensor. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 2873–2882. [Google Scholar] [CrossRef]
- Wei, J.; Li, X.; Sun, L.; Li, D. A 63.2 μW 11-Bit Column Parallel Single-Slope ADC with Power Supply Noise Suppression for CMOS Image Sensors. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Saito, W.; Iizuka, Y.; Kato, N.; Otake, R.; Morishita, F. A Low Noise and Linearity Improvement CMOS Image Sensor for Surveillance Camera with Skew-Relaxation Local Multiply Circuit and On-Chip Testable Ramp Generator. In Proceedings of the 2021 IEEE Asian Solid-State Circuits Conference (A-SSCC), Busan, Korea, 7–10 November 2021; pp. 1–3. [Google Scholar] [CrossRef]
- Park, H.; Yu, C.; Kim, H.; Roh, Y.; Burm, J. Low Power CMOS Image Sensors Using Two Step Single Slope ADC With Bandwidth-Limited Comparators & Voltage Range Extended Ramp Generator for Battery-Limited Application. IEEE Sens. J. 2019, 20, 2831–2838. [Google Scholar] [CrossRef]
- Elmezayen, M.R.; Wu, B.; Ay, S.U. Single-Slope Look-Ahead Ramp ADC for CMOS Image Sensors. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 4484–4493. [Google Scholar] [CrossRef]
- Kim, H.-J. 11-bit Column-Parallel Single-Slope ADC With First-Step Half-Reference Ramping Scheme for High-Speed CMOS Image Sensors. IEEE J. Solid-State Circuits 2021, 56, 2132–2141. [Google Scholar] [CrossRef]
- Xie, S.; Theuwissen, A. A 10 Bit 5 MS/s Column SAR ADC With Digital Error Correction for CMOS Image Sensors. IEEE Trans. Circuits Syst. II Express Briefs 2019, 67, 984–988. [Google Scholar] [CrossRef]
- Kawahito, S.; Park, J.-H.; Isobe, K.; Shafie, S.; Iida, T.; Mizota, T. A CMOS Image Sensor Integrating Column-Parallel Cyclic ADCs with On-Chip Digital Error Correction Circuits. In Proceedings of the 2008 IEEE International Solid-State Circuits Conference—Digest of Technical Papers, San Francisco, CA, USA, 3–7 February 2008; pp. 56–595. [Google Scholar] [CrossRef]
- Okada, C.; Uemura, K.; Hung, L.; Matsuura, K.; Moue, T.; Yamazaki, D.; Kodama, K.; Okano, M.; Morikawa, T.; Yamashita, K.; et al. 7.6 A High-Speed Back-Illuminated Stacked CMOS Image Sensor with Column-Parallel kT/C-Cancelling S&H and Delta-Sigma ADC. In Proceedings of the 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 13–22 February 2021; pp. 116–118. [Google Scholar] [CrossRef]
- Seo, M.-W.; Suh, S.-H.; Iida, T.; Takasawa, T.; Isobe, K.; Watanabe, T.; Itoh, S.; Yasutomi, K.; Kawahito, S. A Low-Noise High Intrascene Dynamic Range CMOS Image Sensor With a 13 to 19b Variable-Resolution Column-Parallel Folding-Integration/Cyclic ADC. IEEE J. Solid-State Circuits 2012, 47, 272–283. [Google Scholar] [CrossRef]
- Morishita, F.; Otsuka, M.; Saito, W. An ADC Test Technique With Dual-Path/Multi-Functional Fine Pattern Generator Realizing High Accuracy Measurement for CMOS Image Sensor. In Proceedings of the 2020 IEEE 29th Asian Test Symposium (ATS), Penang, Malaysia, 23–26 November 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Arai, T.; Yasue, T.; Kitamura, K.; Shimamoto, H.; Kosugi, T.; Jun, S.; Aoyama, S.; Hsu, M.-C.; Yamashita, Y.; Sumi, H.; et al. 6.9 A 1.1 µm 33 M pixel 240 fps 3D-stacked CMOS image sensor with 3-stage cyclic-based analog-to-digital converters. In Proceedings of the 2016 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 31 January–4 February 2016; pp. 126–128. [Google Scholar] [CrossRef]
- Levski, D.; Wany, M.; Choubey, B. A 1-µs Ramp Time 12-bit Column-Parallel Flash TDC-Interpolated Single-Slope ADC With Digital Delay-Element Calibration. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 66, 54–67. [Google Scholar] [CrossRef]
- Seo, M.-W.; Chu, M.; Jung, H.-Y.; Kim, S.; Song, J.; Bae, D.; Lee, S.; Lee, J.; Kim, S.-Y.; Lee, J.; et al. 2.45 e-RMS Low-Random-Noise, 598.5 mW Low-Power, and 1.2 kfps High-Speed 2-Mp Global Shutter CMOS Image Sensor With Pixel-Level ADC and Memory. IEEE J. Solid-State Circuits 2022, 57, 1125–1137. [Google Scholar] [CrossRef]
- Janbu, O.; Johansson, R.; Martinussen, T.; Solhusvik, J. A 1.17-Megapixel CMOS Image Sensor With 1.5 A/D Conversions per Digital CDS Pixel Readout and Four In-Pixel Gain Steps. IEEE J. Solid-State Circuits 2019, 54, 2568–2578. [Google Scholar] [CrossRef]
Measurement Items | Sample 1 (Best/Worst) | Sample 2 (Best/Worst) | Sample 3 (Best/Worst) |
---|---|---|---|
Random noise [LSBrms] | 0.85/0.98 | 0.83/0.96 | 0.85/0.96 |
Fixed pattern noise [LSB] | 0.28/0.36 | 0.28/0.36 | 0.28/0.37 |
Min INL [LSB] | −1.27/−1.86 | −1.72/−2.07 | −1.55/−1.91 |
Max INL [LSB] | 2.09/4.81 | 1.09/2.16 | 1.38/2.41 |
Min DNL [LSB] | −0.35/−0.43 | −0.34/−0.44 | −0.36/−0.41 |
Max DNL [LSB] | 0.38/0.51 | 0.39/0.55 | 0.46/0.53 |
Min adjacent column INL difference [LSB] | −0.92/−1.25 | −0.91/−1.23 | −0.91/−1.17 |
Max adjacent column INL difference [LSB] | 0.96/1.20 | 0.93/1.18 | 0.96/1.14 |
Absolute gain error [dB] | 0.27/−0.70 | 0.22/−0.75 | 0.41/−0.61 |
Cross talk [LSB] | 0.38/0.61 | 0.45/0.53 | 0.38/0.50 |
Accelerated column interference [LSB] | 2.31/2.48 | 2.30/2.45 | 2.34/2.50 |
Unit | This Work | [24] Sensors 2020 | [32] ISSCC 2016 | [30] JSSC 2012 | [33] TCAS-I 2019 | [34] JSSC 2022 | [35] JSSC 2019 | |
---|---|---|---|---|---|---|---|---|
Process Technology | − | 55 nm 1P5M BSI | 90 nm | 45 nm 1P4M/ 65 nm 1P5M | 180 nm 1P4M | 130 nm 1P3M FSI | 65 nm | 90 nm |
Power supply | V | 2.8 (pixel, analog)/1.2 (digital) | 2.8 (analog)/ 1.5 (digital) | 2.5, 2.8 (analog)/ 1.2, 2.5 (digital) | 3.3 (analog)/ 1.8, 3.3 (digital) | 3.3 (analog)/ 1.5 (digital) | 2.8 (analog)/ 1.05 (digital) | − |
Pixel size | um^2 | 1.85 × 1.85 | − | 1.1 × 1.1 | 7.5 × 7.5 | 5.6 × 5.6 | 4.95 × 4.95 | 2.8 × 2.8 |
Pixel array (H × V) | pixels | 3840 × 2160 | 960 × 720 | 7728 × 4368 | 1032 × 1024 | 1024 × 128 | 1668 × 1364 | 1232 × 952 |
Frame rate | fps | 60 | 35 | 240 | 2.2 @ 128smpls. | − | 30/1200 | 75 |
Power consumption | W | 0.3 | 0.03 | 3 | 0.45 | 0.02 | 0.12/0.60 | − |
ADC architecture | − | Single Slope | 2−step Single Slope | 3−stage cyclic based | Folding integration cyclic | Flash TDC− interpolated | Single Slope | SAR |
ADC resolution | bit | 12 | 12 | 12 | 13–19 | 12 | 10 | 10.7 |
ADC power consumption | uW/column | 9.8 | 6.35 | 120 | − | 177 | 23.9 | 2.1 |
ADC DNL | LSB @ 12 bit | +0.55/−0.44 @wst (*1) | +4.25/−1.00 | +0.82/−0.88 | − | +1.1/−0.4 | − | +0.39/−0.36 |
ADC INL | LSB @ 12 bit | +4.81/−2.07 @wst (*1) | +5.73/−7.30 | +1.04/−11.75 | − | +5.8/−8.2 | − | +2.31/−0.79 |
FPN | uVrms | 87 @wst (*1) | − | − | 36 | − | − | 29 |
Random noise | uVrms | 273 | 472 | 414 | 65 @ 128smpls. | 477 | 294 | 407.75 |
FoM (*2) | e-·pJ/step | 0.32 | 0.56 | 0.33 | 0.35 | − | 0.52 | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato, N.; Morishita, F.; Okubo, S.; Ito, M. Circuit Techniques to Improve Low-Light Characteristics and High-Accuracy Evaluation System for CMOS Image Sensor. Sensors 2022, 22, 6040. https://doi.org/10.3390/s22166040
Kato N, Morishita F, Okubo S, Ito M. Circuit Techniques to Improve Low-Light Characteristics and High-Accuracy Evaluation System for CMOS Image Sensor. Sensors. 2022; 22(16):6040. https://doi.org/10.3390/s22166040
Chicago/Turabian StyleKato, Norihito, Fukashi Morishita, Satoshi Okubo, and Masao Ito. 2022. "Circuit Techniques to Improve Low-Light Characteristics and High-Accuracy Evaluation System for CMOS Image Sensor" Sensors 22, no. 16: 6040. https://doi.org/10.3390/s22166040
APA StyleKato, N., Morishita, F., Okubo, S., & Ito, M. (2022). Circuit Techniques to Improve Low-Light Characteristics and High-Accuracy Evaluation System for CMOS Image Sensor. Sensors, 22(16), 6040. https://doi.org/10.3390/s22166040