Microfluidic-Assisted Human Cancer Cells Culturing Platform for Space Biology Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. LOC Platform
2.2. The Construction and Technology of LOC
2.3. Biological Tests Methodology
2.3.1. Cell Lines and Culture Media
2.3.2. Assessment of Various Tumor Cell Lines Ability to Grow on a LOC Platform in Normal and CO2-Independent Culture Media
2.3.3. Long-Term Cells Culturing in CO2-Free Atmosphere
2.3.4. Long-Term Cell Culturing on a LOC Platform at Room Temperature
- (1)
- The antiproliferative assay:
- (2)
- Cell cycle analysis:
3. Results and Discussion
3.1. Assessment of Various Tumor Cell Lines Ability to Grow on a LOC Platform in Normal and CO2-Independent Culture Media
3.2. Long-Term Cells Culturing in CO2-Free Atmosphere
3.3. Long-Term Cell Culturing on a LOC Platform at Room Temperature and in the Incubator
3.4. The First Polish Biological Nanosatellite Mission with Microfluidic Payload Ensuring Cancer Cell Culture—Concept
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- O’Rourke, A.; Zoumplis, A.; Wilburn, P.; Lee, M.D.; Lee, Z.; Vecina, M.; Mercader, K. Following the Astrobiology Roadmap: Origins, Habitability and Future Exploration. Curr. Issues Mol. Biol. 2020, 38, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, B.S. Astrobiology, space and the future age of discovery. R. Soc. 2011, 369, 508–515. [Google Scholar] [CrossRef]
- Kanapskyte, A.; Hawkins, E.M.; Liddell, L.C.; Bhardwaj, S.R.; Gentry, D.; Santa Maria, S.R. Space Biology Research and Biosensor Technologies: Past, Present, and Future. Biosensors 2021, 11, 38. [Google Scholar] [CrossRef]
- Laštovička-Medin, G. CubeSats as space labs for measurements of ubiquity of biological evolution. In Proceedings of the 5th Mediterranean Conference on Embedded Computing (MECO), Bar, Montenegro, 12–16 June 2016; pp. 363–368. [Google Scholar]
- Zea, L.; Santa Maria, S.R.; Ricco, A.J. CubeSats for microbiology and astrobiology research. In Cubesat Handbook, From Mission Design to Operations; Academic Press: Cambridge, MA, USA, 2021; pp. 147–162. [Google Scholar]
- Podwin, A.; Graja, A.; Przystupski, D.; Lizanets, D.; Śniadek, P.; Walczak, R.; Dziuban, J. Lab-on-chip platform as a nanosatellite payload solution for biomedical experiments in outer space. In Proceedings of the 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS), Krakow, Poland, 2–6 December 2019. [Google Scholar]
- Podwin, A.; Śniadek, P.J.; Graja, A.; Kawa, B.; Białas, M.J.; Kubicki, W.; Jurga, M.; Kaczmarek-Pieńczewska, A.; Matkowski, K.; Walczak, R.; et al. Towards astrobiological nanosatellite mission—LOC instrumentation for cell cultivation research in space. In Proceedings of the 24th International Conference on Miniaturized Systems for Chemistry and Life Sciences (μTAS 2020), Online, 4–10 October 2020; pp. 1314–1315. [Google Scholar]
- Iannascoli, L.; Costantini, F.; Lovecchio, N.; Buzzin, A.; Caputo, D.; De Cesare, G.; Nascetti, A. Micro-incubator Based on Lab-on-Glass Technology for Nanosatellite Missions. In Sensors and Microsystems; Di Francia, G., Di Natale, C., Alfano, B., De Vito, S., Esposito, E., Fattoruso, G., Formisano, F., Massera, E., Miglietta, M.L., Polichetti, T., Eds.; AISEM 2019; Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2019; Volume 629. [Google Scholar]
- Ricco, T. Life in Space: Microfluidic Systems Enable the Study of Terrestrial Microbes in Space and the Search for Life on the Solar System’s Icy Moons; NASA Ames Research Center: Mountain View, CA, USA, 2018. [Google Scholar]
- Zea, L. Microbiological Experiments Onboard CubeSats—A Review and Prospects. In Proceedings of the 1st Latin American IAA CubeSat Workshop—Techn Session XIII: PAYLOAD, Brasília, Brazil, 8–11 December 2014; pp. 1–14. [Google Scholar]
- Kitts, C. Flight Results from the GeneSat-1 Biological Microsatellite Mission. In Proceedings of the 21st Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 13–16 August 2007; pp. 1–11. [Google Scholar]
- Ricco, A.J.; Parra, M.; Niesel, D.; Piccini, M.; Ly, D.; McGinnis, M.; Kudlicki, A.; Hines, J.W.; Timucin, L.; Beasley, C.; et al. PharmaSat: Drug dose response in microgravity from a free-flying integrated biofluidic/optical culture-and-analysis satellite. In Proceedings of the SPIE 7929, Microfluidics, BioMEMS, and Medical Microsystems IX, San Francisco, CA, USA, 23–25 January 2011; Volume 79290T. [Google Scholar]
- Nicholson, W.L.; Ricco, A.J. Nanosatellites for Biology in Space: In Situ Measurement of Bacillus subtilis Spore Germination and Growth after 6 Months in Low Earth Orbit on the O/OREOS Mission. Life 2020, 10, 1. [Google Scholar] [CrossRef]
- Ehrenfreund, P.; Ricco, A.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; et al. The O/OREOS mission—Astrobiology in low Earth orbit. Acta Astronaut. 2014, 93, 501–508. [Google Scholar] [CrossRef]
- Nicholson, W.L.; Ricco, A.J.; Agasid, E.; Beasley, C.; Diaz-Aguado, M.; Ehrenfreund, P.; Friedericks, C.; Ghassemieh, S.; Henschke, M.; Hines, J.W.; et al. The O/OREOS Mission: First Science Data from the Space Environment Survivability of Living Organisms (SESLO) Payload. Astrobiology 2011, 11, 951–958. [Google Scholar] [CrossRef] [PubMed]
- Salim, W.W.A.W.; Park, J.; Rickus, J.L.; Rademacher, A.; Ricco, A.J.; Schooley, A.; Benton, J.; Wickizer, B.; Martinez, A.; Mai, N.; et al. SporeSat: A nanosatellite platform lab-on-a-chip system for investigating gravity threshold of fern-spore single-cell calcium ion currents. In Proceedings of the Solid-State Sensors, Actuators and Microsystems Workshop, Hilton Head Island, SC, USA, 8–12 June 2014. [Google Scholar]
- Padgen, M.R.; Chinn, T.N.; Friedericks, C.R.; Lera, M.P.; Chin, M.; Parra, M.P.; Piccini, M.E.; Ricco, A.J.; Spremo, S.M. The EcAMSat fluidic system to study antibiotic resistance in low earth orbit: Development and lessons learned from space flight. Acta Astronaut. 2020, 173, 449–459. [Google Scholar] [CrossRef]
- Padgen, M.R.; Lera, M.P.; Parra, M.P.; Ricco, A.J.; Chin, M.; Chinn, T.N.; Cohen, A.; Friedericks, C.R.; Henschke, M.B.; Snyder, T.V.; et al. EcAMSat spaceflight measurements of the role of σs in antibiotic resistance of stationary phase Escherichia coli in microgravity. Life Sci. Space Res. 2020, 24, 18–24. [Google Scholar] [CrossRef]
- Tieze, S.M.; Liddell, L.C.; Maria, S.R.S.; Bhattacharya, S. BioSentinel: A Biological CubeSat for Deep Space Exploration. Astrobiology 2020. [Google Scholar] [CrossRef]
- Maria, S.R.S.; Marina, D.B.; Tieze, S.M.; Liddell, L.C.; Bhattacharya, S. BioSentinel: Long-TermSaccharomyces cerevisiaePreservation for a Deep Space Biosensor Mission. Astrobiology 2020. [Google Scholar] [CrossRef]
- Ricco, A.J.; Maria, S.R.S.; Hanel, R.P.; Bhattacharya, S. BioSentinel: A 6U Nanosatellite for Deep-Space Biological Science. IEEE Aerosp. Electron. Syst. Mag. 2020, 35, 6–18. [Google Scholar] [CrossRef]
- Padgen, M.R.; Liddell, L.C.; Bhardwaj, S.R.; Gentry, D.; Marina, D.; Parra, M.; Boone, T.; Tan, M.; Ellingson, L.; Rademacher, A.; et al. BioSentinel: A Biofluidic Nanosatellite Monitoring Microbial Growth and Activity in Deep Space. Astrobiology 2021. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, H. BioSentinel: Mission Development of a Radiation Biosensor to Gauge DNA Damage and Repair Beyond Low Earth Orbit on a 6U Nanosatellite. In Proceedings of the 12th Annual CubeSat Developer’s Workshop, San Luis Obispo, CA, USA, 20–22 April 2016. [Google Scholar]
- Pablo, H.; Whittaker, G.N.; Popowicz, A.; Mochnacki, S.M.; Kuschnig, R.; Grant, C.C.; Moffat, A.F.J.; Rucinski, S.M.; Matthews, J.M.; Schwarzenberg-Czerny, A.; et al. The BRITE Constellation Nanosatellite Mission: Testing, Commissioning, and Operations. Publ. Astron. Soc. Pac. 2016, 128, 125001. [Google Scholar] [CrossRef]
- Batista, C.L.G.; Weller, A.C.; Martins, E.; Mattiello-Francisco, F. Towards increasing nanosatellite subsystem robustness. Acta Astronaut. 2019, 156, 187–196. [Google Scholar] [CrossRef]
- Grimm, D.; Wehland, M.; Corydon, T.J.; Richter, P.; Prasad, B.; Bauer, J.; Egli, M.; Kopp, S.; Lebert, M.; Krüger, M. The effects of microgravity on differentiation and cell growth in stem cells and cancer stem cells. Stem Cells Transl. Med. 2020, 9, 882–894. [Google Scholar] [CrossRef]
- Grimm, D.; Egli, M.; Krüger, M.; Riwaldt, S.; Corydon, T.J.; Kopp, S.; Wehland, M.; Wise, P.; Infanger, M.; Mann, V.; et al. Tissue Engineering Under Microgravity Conditions—Use of Stem Cells and Specialized Cells. Stem Cells Dev. 2018, 27, 787–804. [Google Scholar] [CrossRef]
- Krüger, M.; Pietsch, J.; Bauer, J.; Kopp, S.; Carvalho, D.T.O.; Baatout, S.; Moreels, M.; Melnik, D.; Wehland, M.; Egli, M.; et al. Growth of Endothelial Cells in Space and in Simulated Microgravity—A Comparison on the Secretory Level. Cell. Physiol. Biochem. 2019, 52, 1039–1106. [Google Scholar]
- Buken, C.; Sahana, J.; Corydon, T.J.; Melnik, D.; Bauer, J.; Wehland, M.; Krüger, M.; Balk, S.; Abuagela, N.; Infanger, M.; et al. Morphological and Molecular Changes in Juvenile Normal Human Fibroblasts Exposed to Simulated Microgravity. Sci. Rep. 2019, 9, 11882. [Google Scholar] [CrossRef]
- Krüger, M.; Melnik, D.; Kopp, S.; Buken, C.; Sahana, J.; Bauer, J.; Wehland, M.; Hemmersbach, R.; Corydon, T.J.; Infanger, M.; et al. Fighting Thyroid Cancer with Microgravity Research. Int. J. Mol. Sci. 2019, 20, 2553. [Google Scholar] [CrossRef]
- Nassef, M.Z.; Kopp, S.; Wehland, M.; Melnik, D.; Sahana, J.; Krüger, M.; Corydon, T.J.; Oltmann, H.; Schmitz, B.; Schütte, A.; et al. Real Microgravity Influences the Cytoskeleton and Focal Adhesions in Human Breast Cancer Cells. Int. J. Mol. Sci. 2019, 20, 3156. [Google Scholar] [CrossRef]
- Nassef, M.Z.; Melnik, D.; Kopp, S.; Sahana, J.; Infanger, M.; Lützenberg, R.; Relja, B.; Wehland, M.; Grimm, D.; Krüger, M. Breast Cancer Cells in Microgravity: New Aspects for Cancer Research. Int. J. Mol. Sci. 2020, 21, 7345. [Google Scholar] [CrossRef]
- Przystupski, D.; Górska, A.; Michel, O.; Podwin, A.; Śniadek, P.; Łapczyński, R.; Saczko, J.; Kulbacka, J. Testing Lab-on-a-Chip Technology for Culturing Human Melanoma Cells under Simulated Microgravity. Cancers 2021, 13, 402. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Stybayeva, G.; Revzin, A. Fabrication of composite microfluidic devices for local control of oxygen tension in cell cultures. Lab Chip 2019, 19, 306–315. [Google Scholar] [CrossRef]
- Mehling, M.; Tay, S. Microfluidic cell culture. Curr. Opin. Biotechnol. 2014, 25, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Podwin, A.; Janisz, T.; Patejuk, K.; Szyszka, P.; Walczak, R.; Dziuban, J. Towards microfluidics for mycology—material and technological studies on LOCs as new tools ensuring investigation of microscopic fungi and soil organisms. Bull. Pol. Acad. Sci. Tech. Sci. 2021, 69, e136212. [Google Scholar]
- Podwin, A.; Lizanets, D.; Przystupski, D.; Kubicki, W.; Śniadek, P.; Kulbacka, J.; Wymysłowski, A.; Walczak, R.; Dziuban, J.A. Lab-on-Chip Platform for Culturing and Dynamic Evaluation of Cells Development. Micromachines 2020, 11, 196. [Google Scholar] [CrossRef]
- Halldorsson, S.; Lucumi, E.; Gómez-Sjöberg, R.; Fleming, R.M. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 2015, 63, 218–231. [Google Scholar] [CrossRef]
- Hongbin, Y.; Guangya, Z.; Siong, C.F.; Shouhua, W.; Feiwen, L. Novel polydimethylsiloxane (PDMS) based microchannel fabrication method for lab-on-a-chip application. Sens. Actuators B 2009, 137, 754–761. [Google Scholar] [CrossRef]
- Podwin, A.; Kubicki, W.; Dziuban, J. Study of the behavior of Euglena viridis, Euglena gracilis and Lepadella patella cultured in all-glass microaquarium. Biomed. Microdevices 2017, 19, 63. [Google Scholar] [CrossRef]
- ECSS-Q-ST-70-02C; Thermal Vacuum Outgassing Test for the Screening of Space Materials (15 November 2008). The European Cooperation for Space Standardization: Noordwijk, The Netherlands, 2008. Available online: https://ecss.nl/standard/ecss-q-st-70-02c-thermal-vacuum-outgassing-test-for-the-screening-of-space-materials/ (accessed on 28 February 2022).
- Launcher One Service Guide, Virgin Orbit, LLC/Version 2.1/August 2020. Available online: https://virginorbit.com/wp-content/uploads/2020/09/LauncherOne-Service-Guide-August-2020.pdf (accessed on 1 July 2022).
- Horneck, G.; Rettberg, P. Complete Course in Astrobiology, Low Earth Orbit Environment, a Test Bed for Astrobiology; Wiley-VCH Verlag GmgH & Co. KGaA: Weinheim, Germany, 2007. [Google Scholar]
GeneSat-1 | PharmaSat | O/OREOS | SporeSat | EcAMSat | Biosentinel | ||
---|---|---|---|---|---|---|---|
Nanosatellite configuration | 2 U payload, 1 U bus (6.8 kg) | 2 U payload, 1 U bus (5.5 kg) | 2 × 1 U payloads, 1 U bus (5.5 kg) | 2 U payload, 1 U bus (5.5 kg) | 3 U payload, 3 U bus (14 kg) | 4 U payload, 2 U bus (14 kg) | |
Experiment type | Gene expression of E.coli | Drug response of S. cerevisiae | Viability of B. Subtilis and H. Chaoviatoris | Chemical degradation (PAH, amino acid, porphyrin, quinone) | Gravity sensing of plant spores | Drug response of E. coli | DNA damage of S. cerevisiae |
Detection methods | GFP fluorescence | Optical absorbance | Colorimetry (dye indicator) | UV–VIS spectroscopy | Conductivity of spores | Colorimetry (dye indicator) | Colorimetry (dye indicator) |
Launch date | 2006 | 2009 | 2010 | 2014 | 2017 | 2022 |
No | Cel Line | Type of Cancer | Purchased from | Medium * |
---|---|---|---|---|
1 | A549 | lung carcinoma | European Collection of Authenticated Cell Cultures (ECACC, Porton Down, UK) | RPMI 1640 + OptiMEM medium (1:1) (HIIET, PAS, Wroclaw, Poland) with 5% (v/v) fetal bovine serum (FBS; GE Healthcare HyClone, Logan, UT, USA) and 2 mM L-glutamine (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) |
2 | A498 | kidney carcinoma | American Type Culture Collection (ATCC, Manassas, VA, USA) | Opti-Mem + GlutaMax (Invitrogen, Waltham, MA, USA) and RPMI1640 + GlutaMAX (Life Technologies, Renfrew, UK) (1:1) medium with 5% (v/v) FBS (GE Healthcare HyClone, Logan, UT, USA), 1 mM sodium puryvate (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) |
3 | 5637 | urinary bladder TCC | Riken BRC Cell Bank | RPMI1640 + GlutaMAX with 10% (v/v) FBS (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) |
4 | RT-112 | urinary bladder TCC | RCCL (Resistant Cancer Cell Line Collection) | Dulbecco’s Modified Eagle Medium (DMEM; Life Technologies, Renfrew, UK) with 10% (v/v) FBS (GE Healthcare HyClone, Logan, UT, USA) and 2 mM L-glutamine |
5 | TCC-SUP | urinary bladder TCC | German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany) | DMEM with 10% (v/v) FBS (GE Healthcare HyClone, Logan, UT, USA) and 2 mM L-glutamine |
6 | UM-UC-3 | urinary bladder TCC | European Collection of Authenticated Cell Cultures (ECACC, Porton Down, UK) | DMEM with 10% (v/v) FBS (GE Healthcare HyClone, Logan, UT, USA) and 2 mM L-glutamine |
7 | UM-UC-3/CDDP | urinary bladder TCC, resistant to cisplatin | ECACC, established at Hirszfeld Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences (HIIET, PAS, Wroclaw, Poland | DMEM with 10% (v/v) FBS and 2 mM L-glutamine, additionally supplemented with 2.5 µg/mL cisplatin (Accord, Warsaw, Poland) |
8 | UM-UC-3/GEM | urinary bladder TCC, resistant to gemcitabine | ECACC, established at Hirszfeld Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences (HIIET, PAS, Wroclaw, Poland | DMEM with 10% (v/v) FBS (GE Healthcare HyClone, Logan, UT, USA) and 2 mM L-glutamine, additionally supplemented with 500 nM gemcitabine (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) |
9 | UM-UC-3/VBL | urinary bladder TCC, resistant to vinblastine | ECACC, established at Hirszfeld Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences (HIIET, PAS, Wroclaw, Poland | DMEM, supplemented with 10% (v/v) FBS and 2 mM L-glutamine, additionally supplemented with 5 nM vinblastine (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) |
10 | HCT116 | colon carcinoma | American Type Culture Collection (ATCC, Manassas, VA, USA) | McCoy’s 5 A medium (Life Technologies, Renfrew, UK) supplemented with 10% (v/v) FBS (GE Healthcare HyClone, Logan, UT, USA) |
11 | HT29 | colon adenocarcinoma | American Type Culture Collection (ATCC, Manassas, VA, USA) | RPMI 1640 + OptiMEM medium (1:1) supplemented with 5% (v/v) FBS (GE Healthcare HyClone, Logan, UT, USA), 2 mM L-glutamine and 1 mM sodium pyruvate |
12 | LoVo | colon adenocarcinoma | American Type Culture Collection (ATCC, Manassas, VA, USA), | F-12K Nutrient Mixture (F-12K; Corning, Corning, USA), supplemented with 10% (v/v) FBS (GE Healthcare HyClone, Logan, UT, USA) |
13 | LoVo/DX | colon adenocarcinoma, resistant to doxorubicin | American Type Culture Collection (ATCC, Manassas, VA, USA) | F-12K Nutrient Mixture, supplemented with 10% (v/v) FBS additionally supplemented with doxorubicin 100 ng/mL (Accord, Warsaw, Poland) |
14 | A2780 | ovary carcinoma, epithelial | European Collection of Authenticated Cell Cultures (ECACC, Porton Down, UK) | RPMI1640 + GlutaMAX containing 10% (v/v) FBS (GE Healthcare HyClone, Logan, UT, USA) |
15 | A2780/CDDP | ovary carcinoma, epithelial, resistant to cisplatin | European Collection of Authenticated Cell Cultures (ECACC, Porton Down, UK) | RPMI1640 + GlutaMAXcontaining 10% (v/v) FBS, additionally supplemented with 1 µM cisplatin |
16 | SKOV-3 | ovary adenocarcinoma | American Type Culture Collection (Rockville, MD, USA) | McCoy’s 5A medium, supplemented with 10% (v/v) FBS (GE Healthcare HyClone, Logan, UT, USA) |
17 | MCF-7 | mammary gland adenocarcinoma | European Collection of Authenticated Cell Cultures (ECACC, Porton Down, UK) | Eagle’s medium (HIIET, PAS, Wroclaw, Poland), supplemented with 10% (v/v) FBS (Sigma-Aldrich Chemie GmbH, Steinheim, Germany), 2 mM L-glutamine, MEM non-essential amino acid solution 1% (v/v) (Sigma-Aldrich Chemie GmbH, Steinheim, Germany), insulin 8 µg/mL (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) |
18 | MDA-MB-231 | mammary gland adenocarcinoma | American Type Culture Collection (ATCC, Manassas, VA, USA) | RPMI 1640 (HIIET, PAS, Wroclaw, Poland), supplemented with 10% (v/v) FBS (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) and 2 mM L-glutamine |
19 | PC-3 | prostate adenocarcinoma | European Collection of Authenticated Cell Cultures (ECACC, Porton Down, UK) | RPMI 1640, supplemented with 10% (v/v) FBS (GE Healthcare HyClone, Logan, UT, USA) and 2 mM L-glutamine |
Compound | Concentration Ranges [µM] | Manufacturer |
---|---|---|
Paclitaxel | 0.1–0.0001 | Fresenius Kabi |
Cisplatin | 100–0.1 | Accord |
5-Fluorouracil | 100–0.1 | Accord |
Etoposide | 100–0.1 | Sigma-Aldrich |
Gemcitabine | 0.1–0.001 | Sigma-Aldrich |
Doxorubicin | 1–0.001 | Sigma-Aldrich |
Cell Line | Cell Line Type | Growth Rating After * | ||
---|---|---|---|---|
24 h | 72 h | 120 h | ||
A549 | lung carcinoma | ++/++ | ++/++ | −/++ |
A498 | kidney carcinoma | ++/++ | ++/+ | +/++ |
5637 | urinary bladder TCC | +/− | +/− | −/− |
RT-112 | urinary bladder TCC | ++/++ | +++/+++ | +/+++ |
TCC-SUP | urinary bladder TCC | ++/+ | +++/++ | +++/+++ |
UM-UC-3 | urinary bladder TCC | ++/+ | ++/++ | +/+++ |
UM-UC-3/CDDP | urinary bladder TCC, resistant to cisplatin | ++/− | +/− | −/− |
UM-UC-3/GEM | urinary bladder TCC, resistant to gemcitabine | −/− | −/− | −/− |
UM-UC-3/VBL | urinary bladder TCC, resistant to vinblastine | ++/− | −/− | −/− |
HCT116 | colon carcinoma | ++/+ | ++/++ | +/+++ |
HT29 | colon adenocarcinoma | ++/++ | +++/++ | +/++ |
LoVo | colon adenocarcinoma | ++/++ | +/+++ | +/+++ |
LoVo/DX | colon adenocarcinoma, resistant to doxorubicin | +/+ | +/− | +/− |
A2780 | ovary carcinoma, epithelial | +/+ | +/− | +/− |
A2780/CDDP | ovary carcinoma, epithelial, resistant to cisplatin | −/+ | −/− | −/− |
SKOV-3 | ovary adenocarcinoma | +++/+++ | +++/+++ | −/++ |
MCF-7 | mammary gland adenocarcinoma | +/+ | ++/+ | ++/+++ |
MDA-MB-231 | mammary gland adenocarcinoma | +/− | +/+ | ++/++ |
PC-3 | prostate adenocarcinoma | +/+ | ++/+ | ++/++ |
Cell Line | Cell Line Type | Growth Rating After * | ||
---|---|---|---|---|
24 h | 72 h | 120 h | ||
A549 | lung carcinoma | ++/++ | ++/++ | −/++ |
A498 | kidney carcinoma | +/+ | ++/+ | +/++ |
RT-112 | urinary bladder TCC | ++/++ | +++/+++ | +/+++ |
TCC-SUP | urinary bladder TCC | +/+ | +++/++ | +++/+++ |
UM-UC-3 | urinary bladder TCC | ++/++ | ++/++ | +/+++ |
HT29 | colon adenocarcinoma | +/+ | +++/++ | +/++ |
LoVo | colon adenocarcinoma | −/+ | −/++ | −/++ |
SKOV-3 | ovary adenocarcinoma | ++/++ | ++/++ | +/++ |
MCF-7 | mammary gland adenocarcinoma | +/+ | ++/+ | ++/+++ |
MDA-MB-231 | mammary gland adenocarcinoma | +/− | +/+ | +/++ |
Step | Phase | Environmental Conditions (Temperature and Relative Humidity) | Time |
---|---|---|---|
0 | Payload processing facility | 17–25 °C, 40–60% | ~2–3 weeks |
1 | Launchpad activities | 4–27 °C, ≤60% | ~1–2 days |
2 | Flight | Payload will be exposed to an equivalent radiative heat flux emanating from about 93 °C surface with an emissivity of 0.9 | ~1 h |
3 | Free-orbiting satellite (space experimentation) | −120 ÷ +120 °C (outer space) [43] | ~5 days |
Overall mission time | ~20–28 days |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krakos, A.; Jarosz, J.; Śniadek, P.; Psurski, M.; Graja, A.; Białas, M.; Oliszewska, E.; Wietrzyk, J.; Walczak, R.; Dziuban, J. Microfluidic-Assisted Human Cancer Cells Culturing Platform for Space Biology Applications. Sensors 2022, 22, 6183. https://doi.org/10.3390/s22166183
Krakos A, Jarosz J, Śniadek P, Psurski M, Graja A, Białas M, Oliszewska E, Wietrzyk J, Walczak R, Dziuban J. Microfluidic-Assisted Human Cancer Cells Culturing Platform for Space Biology Applications. Sensors. 2022; 22(16):6183. https://doi.org/10.3390/s22166183
Chicago/Turabian StyleKrakos (Podwin), Agnieszka, Joanna Jarosz, Patrycja Śniadek, Mateusz Psurski, Adrianna Graja, Marcin Białas, Ewa Oliszewska, Joanna Wietrzyk, Rafał Walczak, and Jan Dziuban. 2022. "Microfluidic-Assisted Human Cancer Cells Culturing Platform for Space Biology Applications" Sensors 22, no. 16: 6183. https://doi.org/10.3390/s22166183
APA StyleKrakos, A., Jarosz, J., Śniadek, P., Psurski, M., Graja, A., Białas, M., Oliszewska, E., Wietrzyk, J., Walczak, R., & Dziuban, J. (2022). Microfluidic-Assisted Human Cancer Cells Culturing Platform for Space Biology Applications. Sensors, 22(16), 6183. https://doi.org/10.3390/s22166183