Inter-User Distance Estimation Based on a New Type of Fingerprint in Massive MIMO System for COVID-19 Contact Detection
Abstract
:1. Introduction
2. Related Work and Motivations
2.1. Related Work
Authors | Scenario | Method | Limitations |
---|---|---|---|
Mercuri et al. [7] | Indoors | A single-input and SISO FMCW radar architecture that integrates two frequency scanning antennas is proposed. | This method is valid only in the LoS scenario. |
Kanhere et al. [11] | Indoors | Positioning using a combination of measured path loss and AoA. | The accuracy of positioning depends on the measurement accuracy. |
Vieira et al. [32] | Outdoors | An ADP is obtained from the CSI and using the DCNN to learn the mapping between the ADP and the users’ location. | They extracted the ADP from the measured CSI. Thus, the accuracy of this method depends on the measurement accuracy. |
Sun et al. [31] | Outdoors | An angle-delay channel amplitude matrix (ADCAM) is proposed as fingerprint. The ADCAM has rich multipath information with clear physical interpretation that can train DCNN easily. | They assume that the CSI is known. |
Sun et al. [47] | Outdoors | A classification-based localization method is proposed. | This method need to know the CSI. Besides, this method needs a large storage overhead to save training data. |
2.2. Motivations
- To improve the accuracy of the IUD estimation, we design a novel fingerprint that includes two users’ location information instead of using ADP or CSI as fingerprint which only includes the location information of one user.
- We propose a novel beam energy image generated by beam sweeping as the fingerprint. Compared with the conventional fingerprint-based methods, such as using the CSI or the extracted ADP from CSI as the fingerprint, the proposed fingerprint is deeply related to the horizontal and vertical angles corresponding to the user.
- Using beam energy image generated by beam sweeping instead of using CSI as a fingerprint can reduce the CSI estimation overhead.
- Compared with the conventional geometric methods which need multiple BSs for localization, the proposed method only needs one BS. Besides, after training, the proposed method can also work on mobile users.
- In general, generating a high-resolution beam energy image of a user by beam sweeping involves relatively high time expenditure. In this sense, we utilize a super-resolution technique to improve the low-resolution beam energy images to higher resolution ones.
3. System Model
3.1. Channel Model
3.2. Beam Sweeping
3.3. Problem Description
4. The IUD Estimation Approach
4.1. User Localization Based IUD Estimation
4.2. Proposed IUD Estimations
4.3. Super-Resolution
5. Performance Evaluation and Simulation Results
5.1. Experiment Specifications
5.2. Evaluation Metrics
5.2.1. Super Resolution
5.2.2. IUD Estimation
5.3. Super-Resolution Training
5.4. Distance Estimation
5.5. Robustness Analysis
5.5.1. Fine-Tuning with Different Number of Users
5.5.2. Fine-Tuning with Different Number of Epochs
5.6. Complexity Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADP | Angle Delay Profile |
AoA | Angle of Arrival |
AWGN | Additive white Gaussian noise |
BS | Base Station |
CDF | Cumulative Distribution Function |
CNN | Convolutional Neural Network |
COCOA | COVID-19 Contact Confirming Application |
CSI | Channel State Information |
D2D | Device-to-Device |
DNN | Deep Neural Network |
DCNN | Deep Convolutional Neural Network |
DFT | Discrete Fourier Transform |
DNN | Deep Neural Network |
MIMO | Multiple-Input Multiple-Output |
mmWave | MillimeterWave |
MSE | Mean Squared Error |
ReLU | Rectified Linear Unit |
RSSI | Received Signal Strength Indicator |
ToA | Time of Arrival |
UPA | uniform Planer Array |
References
- Junglas, I.A.; Watson, R.T. Location-Based Services. Commun. ACM 2008, 51, 65–69. [Google Scholar] [CrossRef]
- Guvenc, I.; Chong, C.C. A Survey on TOA Based Wireless Localization and NLOS Mitigation Techniques. IEEE Commun. Surv. Tutor. 2009, 11, 107–124. [Google Scholar] [CrossRef]
- Maranò, S.; Gifford, W.M.; Wymeersch, H.; Win, M.Z. NLOS identification and mitigation for localization based on UWB experimental data. IEEE J. Sel. Areas Commun. 2010, 28, 1026–1035. [Google Scholar] [CrossRef]
- Shen, Y.; Mazuelas, S.; Win, M.Z. Network Navigation: Theory and Interpretation. IEEE J. Sel. Areas Commun. 2012, 30, 1823–1834. [Google Scholar] [CrossRef]
- Yang, X.; Wu, Z.; Zhang, Q. Bluetooth Indoor Localization With Gaussian–Bernoulli Restricted Boltzmann Machine Plus Liquid State Machine. IEEE Trans. Instrum. Meas. 2022, 71, 1–8. [Google Scholar] [CrossRef]
- Zafari, F.; Gkelias, A.; Leung, K.K. A Survey of Indoor Localization Systems and Technologies. IEEE Commun. Surv. Tutor. 2019, 21, 2568–2599. [Google Scholar] [CrossRef]
- Mercuri, M.; Sacco, G.; Hornung, R.; Zhang, P.; Visser, H.J.; Hijdra, M.; Liu, Y.H.; Pisa, S.; van Liempd, B.; Torfs, T. 2-D Localization, Angular Separation and Vital Signs Monitoring Using a SISO FMCW Radar for Smart Long-Term Health Monitoring Environments. IEEE Internet Things J. 2021, 8, 11065–11077. [Google Scholar] [CrossRef]
- Mercuri, M.; Lorato, I.R.; Liu, Y.H.; Wieringa, F.; Hoof, C.V.; Torfs, T. Vital-sign monitoring and spatial tracking of multiple people using a contactless radar-based sensor. Nat. Electron. 2019, 2, 252–262. [Google Scholar] [CrossRef]
- Ye, X.; Yin, X.; Cai, X.; Pérez Yuste, A.; Xu, H. Neural-Network-Assisted UE Localization Using Radio-Channel Fingerprints in LTE Networks. IEEE Access 2017, 5, 12071–12087. [Google Scholar] [CrossRef]
- Koivisto, M.; Hakkarainen, A.; Costa, M.; Kela, P.; Leppanen, K.; Valkama, M. High-Efficiency Device Positioning and Location-Aware Communications in Dense 5G Networks. IEEE Commun. Mag. 2017, 55, 188–195. [Google Scholar] [CrossRef]
- Kanhere, O.; Rappaport, T.S. Position Locationing for Millimeter Wave Systems. In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 206–212. [Google Scholar] [CrossRef]
- Shen, Y.; Win, M.Z. On the Use of Multipath Geometry for Wideband Cooperative Localization. In Proceedings of the GLOBECOM 2009—2009 IEEE Global Telecommunications Conference, Honolulu, HI, USA, 30 November–4 December 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Di Taranto, R.; Muppirisetty, S.; Raulefs, R.; Slock, D.; Svensson, T.; Wymeersch, H. Location-Aware Communications for 5G Networks: How location information can improve scalability, latency, and robustness of 5G. IEEE Signal Process. Mag. 2014, 31, 102–112. [Google Scholar] [CrossRef]
- Ferrand, P.; Decurninge, A.; Guillaud, M. DNN-based Localization from Channel Estimates: Feature Design and Experimental Results. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Rusek, F.; Persson, D.; Lau, B.K.; Larsson, E.G.; Marzetta, T.L.; Edfors, O.; Tufvesson, F. Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays. IEEE Signal Process. Mag. 2013, 30, 40–60. [Google Scholar] [CrossRef]
- Wymeersch, H.; Marano, S.; Gifford, W.M.; Win, M.Z. A Machine Learning Approach to Ranging Error Mitigation for UWB Localization. IEEE Trans. Commun. 2012, 60, 1719–1728. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Shen, Y. Multipath Effect Mitigation by Joint Spatiotemporal Separation in Large-Scale Array Localization. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Vari, M.; Cassioli, D. mmWaves RSSI indoor network localization. In Proceedings of the 2014 IEEE International Conference on Communications Workshops (ICC), Sydney, NSW, Australia, 10–14 June 2014; pp. 127–132. [Google Scholar] [CrossRef]
- Shen, Y.; Wymeersch, H.; Win, M.Z. Fundamental Limits of Wideband Localization—Part II: Cooperative Networks. IEEE Trans. Inf. Theory 2010, 56, 4981–5000. [Google Scholar] [CrossRef]
- Buehrer, R.M.; Wymeersch, H.; Vaghefi, R.M. Collaborative Sensor Network Localization: Algorithms and Practical Issues. Proc. IEEE 2018, 106, 1089–1114. [Google Scholar] [CrossRef]
- Win, M.Z.; Dai, W.; Shen, Y.; Chrisikos, G.; Vincent Poor, H. Network Operation Strategies for Efficient Localization and Navigation. Proc. IEEE 2018, 106, 1224–1254. [Google Scholar] [CrossRef]
- Cao, Y.; Ohtsuki, T.; Quek, T.Q.S. Dual-Ascent Inspired Transmit Precoding for Evolving Multiple-Access Spatial Modulation. IEEE Trans. Commun. 2020, 68, 6945–6961. [Google Scholar] [CrossRef]
- Luan, M.; Wang, B.; Zhao, Y.; Feng, Z.; Hu, F. Phase Design and Near-Filed Target Localization for RIS-Assisted Regional Localization System. IEEE Trans. Veh. Technol. 2021, 71, 1766–1777. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Lu, T.; Gulliver, T.A. Cooperative RSS-Based Localization in Wireless Sensor Networks Using Relative Error Estimation and Semidefinite Programming. IEEE Trans. Veh. Technol. 2019, 68, 483–497. [Google Scholar] [CrossRef]
- Lam, K.H.; Cheung, C.C.; Lee, W.C. RSSI-Based LoRa Localization Systems for Large-Scale Indoor and Outdoor Environments. IEEE Trans. Veh. Technol. 2019, 68, 11778–11791. [Google Scholar] [CrossRef]
- Abu-Shaban, Z.; Wymeersch, H.; Abhayapala, T.; Seco-Granados, G. Single-Anchor Two-Way Localization Bounds for 5G mmWave Systems. IEEE Trans. Veh. Technol. 2020, 69, 6388–6400. [Google Scholar] [CrossRef]
- He, D.; Chen, X.; Pei, L.; Zhu, F.; Jiang, L.; Yu, W. Multi-BS Spatial Spectrum Fusion for 2-D DOA Estimation and Localization Using UCA in Massive MIMO System. IEEE Trans. Instrum. Meas. 2021, 70, 1–13. [Google Scholar] [CrossRef]
- Pan, Y.; De Bast, S.; Pollin, S. Indoor Direct Positioning With Imperfect Massive MIMO Array Using Measured Near-Field Channels. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Rangan, S.; Rappaport, T.S.; Erkip, E. Millimeter-Wave Cellular Wireless Networks: Potentials and Challenges. Proc. IEEE 2014, 102, 366–385. [Google Scholar] [CrossRef]
- Garcia, N.; Wymeersch, H.; Larsson, E.G.; Haimovich, A.M.; Coulon, M. Direct Localization for Massive MIMO. IEEE Trans. Signal Process. 2017, 65, 2475–2487. [Google Scholar] [CrossRef]
- Sun, X.; Wu, C.; Gao, X.; Li, G.Y. Fingerprint-Based Localization for Massive MIMO-OFDM System With Deep Convolutional Neural Networks. IEEE Trans. Veh. Technol. 2019, 68, 10846–10857. [Google Scholar] [CrossRef]
- Vieira, J.; Leitinger, E.; Sarajlic, M.; Li, X.; Tufvesson, F. Deep convolutional neural networks for massive MIMO fingerprint-based positioning. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Patel, S.J.; Zawodniok, M.J. 3D Localization of RFID Antenna Tags Using Convolutional Neural Networks. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [Google Scholar] [CrossRef]
- Liu, J.; Guo, G. Vehicle Localization During GPS Outages With Extended Kalman Filter and Deep Learning. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Gante, J.; Falcão, G.; Sousa, L. Deep Learning Architectures for Accurate Millimeter Wave Positioning in 5G. Neural Process. Lett. 2020, 51, 487–514. [Google Scholar] [CrossRef]
- Savic, V.; Larsson, E.G. Fingerprinting-Based Positioning in Distributed Massive MIMO Systems. In Proceedings of the 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, MA, USA, 6–9 September 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Abu-Shaban, Z.; Zhou, X.; Abhayapala, T.; Seco-Granados, G.; Wymeersch, H. Performance of location and orientation estimation in 5G mmWave systems: Uplink vs downlink. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Ma, Z.; Ho, K. TOA localization in the presence of random sensor position errors. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 2468–2471. [Google Scholar] [CrossRef]
- Sadowski, S.; Spachos, P. RSSI-Based Indoor Localization With the Internet of Things. IEEE Access 2018, 6, 30149–30161. [Google Scholar] [CrossRef]
- Zane, M.; Rupp, M.; Schwarz, S. Performance Investigation of Angle of Arrival based Localization. In Proceedings of the WSA 2020; 24th International ITG Workshop on Smart Antennas, Hamburg, Germany, 18–20 February 2020; pp. 1–4. [Google Scholar]
- Zhao, S.; Zhang, X.P.; Cui, X.; Lu, M. Optimal Two-Way TOA Localization and Synchronization for Moving User Devices With Clock Drift. IEEE Trans. Veh. Technol. 2021, 70, 7778–7789. [Google Scholar] [CrossRef]
- Dai, Z.; Wang, G.; Jin, X.; Lou, X. Nearly Optimal Sensor Selection for TDOA-Based Source Localization in Wireless Sensor Networks. IEEE Trans. Veh. Technol. 2020, 69, 12031–12042. [Google Scholar] [CrossRef]
- Zheng, Q.; Luo, L.; Song, H.; Sheng, G.; Jiang, X. A RSSI-AOA-Based UHF Partial Discharge Localization Method Using MUSIC Algorithm. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Zhang, C.; Patras, P.; Haddadi, H. Deep Learning in Mobile and Wireless Networking: A Survey. IEEE Commun. Surv. Tutor. 2019, 21, 2224–2287. [Google Scholar] [CrossRef]
- Shen, Z.; Li, J.; Wu, Q. Data-Driven Interference Localization Using a Single Satellite Based on Received Signal Strength. IEEE Trans. Veh. Technol. 2020, 69, 8657–8669. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, J.; Sheng, M.; Zheng, Y.; Li, J. Exploiting Fingerprint Correlation for Fingerprint-Based Indoor Localization: A Deep Learning Based Approach. IEEE Trans. Veh. Technol. 2021, 70, 5762–5774. [Google Scholar] [CrossRef]
- Sun, X.; Gao, X.; Li, G.Y.; Han, W. Single-Site Localization Based on a New Type of Fingerprint for Massive MIMO-OFDM Systems. IEEE Trans. Veh. Technol. 2018, 67, 6134–6145. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, Y.; Qin, D. A Novel Indoor Fingerprint Localization System Based on Distance Metric Learning and AP Selection. IEEE Trans. Instrum. Meas. 2022, 71, 1–15. [Google Scholar] [CrossRef]
- Pu, Q.; Ng, J.K.Y.; Zhou, M. Fingerprint-Based Localization Performance Analysis: From the Perspectives of Signal Measurement and Positioning Algorithm. IEEE Trans. Instrum. Meas. 2021, 70, 1–15. [Google Scholar] [CrossRef]
- Bianchi, V.; Ciampolini, P.; De Munari, I. RSSI-Based Indoor Localization and Identification for ZigBee Wireless Sensor Networks in Smart Homes. IEEE Trans. Instrum. Meas. 2019, 68, 566–575. [Google Scholar] [CrossRef]
- Canetti, R.; Trachtenberg, A.; Varia, M. Anonymous Collocation Discovery: Harnessing Privacy to Tame the Coronavirus. arXiv 2020, arXiv:2003.13670. [Google Scholar]
- Dmitrienko, M.; Singh, A.; Erichsen, P.; Raskar, R. Proximity Inference with Wifi-Colocation during the COVID-19 Pandemic. arXiv 2020, arXiv:2009.12699. [Google Scholar]
- Varela, P.M.; Hong, J.; Ohtsuki, T.; Qin, X. IGMM-Based Co-Localization of Mobile Users With Ambient Radio Signals. IEEE Internet Things J. 2017, 4, 308–319. [Google Scholar] [CrossRef]
- Cudak, M.; Kovarik, T.; Thomas, T.A.; Ghosh, A.; Kishiyama, Y.; Nakamura, T. Experimental mm wave 5G cellular system. In Proceedings of the 2014 IEEE Globecom Workshops (GC Wkshps), Austin, TX, USA, 8–12 December 2014; pp. 377–381. [Google Scholar] [CrossRef]
- Echigo, H.; Cao, Y.; Bouazizi, M.; Ohtsuki, T. A Deep Learning-Based Low Overhead Beam Selection in mmWave Communications. IEEE Trans. Veh. Technol. 2021, 70, 682–691. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, R.; Shi, W.; Chen, L. Precise 3D Indoor Localization and Trajectory Optimization Based on Sparse Wi-Fi FTM Anchors and Built-in Sensors. IEEE Trans. Veh. Technol. 2022, 71, 4042–4056. [Google Scholar] [CrossRef]
- Luo, R.C.; Hsiao, T.J. Indoor Localization System Based on Hybrid Wi-Fi/BLE and Hierarchical Topological Fingerprinting Approach. IEEE Trans. Veh. Technol. 2019, 68, 10791–10806. [Google Scholar] [CrossRef]
- Zhou, M.; Li, Y.; Tahir, M.J.; Geng, X.; Wang, Y.; He, W. Integrated Statistical Test of Signal Distributions and Access Point Contributions for Wi-Fi Indoor Localization. IEEE Trans. Veh. Technol. 2021, 70, 5057–5070. [Google Scholar] [CrossRef]
- Bouazizi, M.; Yang, S.; Cao, Y.; Ohtsuki, T. A Novel Approach for Inter-User Distance Estimation in 5G mmWave Networks Using Deep Learning. In Proceedings of the 2021 26th IEEE Asia-Pacific Conference on Communications (APCC), Kuala Lumpur, Malaysia, 11–13 October 2021; pp. 223–228. [Google Scholar] [CrossRef]
- Tse, D.; Viswanath, P. MIMO I: Spatial multiplexing and channel modeling. In Fundamentals of Wireless Communication; Cambridge University Press: Cambridge, UK, 2005; pp. 290–331. [Google Scholar] [CrossRef]
- Li, C.; Tanghe, E.; Plets, D.; Suanet, P.; Hoebeke, J.; De Poorter, E.; Joseph, W. ReLoc: Hybrid RSSI- and Phase-Based Relative UHF-RFID Tag Localization With COTS Devices. IEEE Trans. Instrum. Meas. 2020, 69, 8613–8627. [Google Scholar] [CrossRef]
- Mukhopadhyay, B.; Srirangarajan, S.; Kar, S. RSS-Based Localization in the Presence of Malicious Nodes in Sensor Networks. IEEE Trans. Instrum. Meas. 2021, 70, 1–16. [Google Scholar] [CrossRef]
- Wireless em Propagation Software—Wireless Insite. Available online: https://www.techbriefs.com/component/content/article/tb/insiders/et/products/11026 (accessed on 21 July 2022).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
Symbol | Description |
---|---|
x | Scalar. |
Column-vector. | |
Matrix. | |
The -norm operator. | |
⊗ | Kronecker product. |
Complex conjugate transpose. | |
The transpose operations. | |
P | The transmit power. |
The transmitted signal of the k-th user. | |
The analog beamformer of the k-th user. | |
The received signal of the k-th user. | |
The Discrete Fourier Transform based codebook. | |
Additive white Gaussian noise. | |
The mmWave mMIMO channel between the BS and the k-th user. | |
L | The total number of paths. |
The horizontal angles. | |
The vertical angles. | |
The complex path gain of the ℓ-th path. | |
The number of transmit antennas. | |
The number of antennas along the vertical. | |
The number of antennas along the horizontal. | |
g | The complex reflection gain. |
The path distance. | |
The wavelength. | |
d | The distance between the consecutive antennas in both vertical and horizontal directions. |
The number of beams at the vertical axis. | |
The number of beams at the horizontal axis. | |
The weights on antenna elements along the vertical directions. | |
The weights on antenna elements along the horizontal directions. | |
The Received Signal Strength Indicator (RSSI) of the received beams. | |
e | The distance estimation error. |
The generated power matrices/images. | |
The difference matrix between the two users k and l. | |
Batch size. |
Parameter Description | Value |
---|---|
Carrier frequency | 60 GHz |
# Antennas at the BS () | |
# Number of beams | 16 × 16/8 × 8/4 × 4 |
user spread area | 60 × 30 m2 |
Height of BS | 10 m |
Total downlink power P | 30 dBm |
Signal to interference power ratio | 10 dB |
Number of paths L | 25 |
Reflection gain g | −6 dB |
Noise figure F | 9.5 dB |
CDF = 0.5 | CDF = 0.9 | |
---|---|---|
DCNN | 0.280 m | 0.703 m |
Classification | 0.409 m | 1.018 m |
Regression | 0.780 m | 1.304 m |
4 × 4 | 0.160 m | 0.304 m |
4 × 4 enhanced | 0.101 m | 0.231 m |
8 × 8 | 0.097 m | 0.205 m |
8 × 8 enhanced | 0.096 m | 0.197 m |
16 × 16 | 0.093 m | 0.184 m |
CDF = 0.5 | CDF = 0.9 | |
---|---|---|
4 × 4 fine-tuned [20 users] | 0.873 m | 2.828 m |
4 × 4 fine-tuned [50 users] | 0.284 m | 0.919 m |
4 × 4 fine-tuned [100 users] | 0.266 m | 0.862 m |
8 × 8 fine-tuned [20 users] | 0.710 m | 2.307 m |
8 × 8 fine-tuned [50 users] | 0.153 m | 0.497 m |
8 × 8 fine-tuned [100 users] | 0.142 m | 0.461 m |
CDF = 0.5 | CD = 0.9 | |
---|---|---|
4 × 4 fine-tuned [10 epochs] | 0.873 m | 2.826 m |
4 × 4 fine-tuned [50 epochs] | 0.327 m | 1.060 m |
4 × 4 fine-tuned [100 epochs] | 0.284 m | 0.919 m |
8 × 8 fine-tuned [10 epochs] | 0.655 m | 2.129 m |
8 × 8 fine-tuned [50 epochs] | 0.218 m | 0.710 m |
8 × 8 fine-tuned [100 epochs] | 0.153 m | 0.497 m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Bouazizi, M.; Cao, Y.; Ohtsuki, T. Inter-User Distance Estimation Based on a New Type of Fingerprint in Massive MIMO System for COVID-19 Contact Detection. Sensors 2022, 22, 6211. https://doi.org/10.3390/s22166211
Yang S, Bouazizi M, Cao Y, Ohtsuki T. Inter-User Distance Estimation Based on a New Type of Fingerprint in Massive MIMO System for COVID-19 Contact Detection. Sensors. 2022; 22(16):6211. https://doi.org/10.3390/s22166211
Chicago/Turabian StyleYang, Siyuan, Mondher Bouazizi, Yuwen Cao, and Tomoaki Ohtsuki. 2022. "Inter-User Distance Estimation Based on a New Type of Fingerprint in Massive MIMO System for COVID-19 Contact Detection" Sensors 22, no. 16: 6211. https://doi.org/10.3390/s22166211
APA StyleYang, S., Bouazizi, M., Cao, Y., & Ohtsuki, T. (2022). Inter-User Distance Estimation Based on a New Type of Fingerprint in Massive MIMO System for COVID-19 Contact Detection. Sensors, 22(16), 6211. https://doi.org/10.3390/s22166211