Stereovision-Based Ego-Motion Estimation for Combine Harvesters
Abstract
:1. Introduction
- An accurate and robust stereo visual odometry was developed to estimate the motion of combine harvesters. We studied the problem of implementing salient feature detection, discriminative description, and reliable matching under the agricultural scenario.
- We exploit prior information about the harvester motion and its environment to speed up data association. Several strategies are implemented to tackle the highly similar or repetitive agriculture scenes.
- Systematic and extensive evaluation of our method was performed on real datasets recorded in a crop field by a stereo camera mounted on top of combine harvesters. The results demonstrate high performance in the pose estimation task.
2. Related Work
3. Materials and Method
3.1. Overview
3.2. Front-End
3.2.1. Image Pre-Processing
3.2.2. Feature Extraction and Matching
3.2.3. Ego-Motion Estimation
3.2.4. New Keyframe Decision and Landmark Creation
3.3. Back-End
4. Experimental Results
4.1. Experimental Setup
4.2. Implementation Details
4.3. Accuracy
4.4. Runtime
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gonzalez-de-Soto, M.; Emmi, L.; Garcia, I.; Gonzalez-de-Santos, P. Reducing fuel consumption in weed and pest control using robotic tractors. Comput. Electron. Agric. 2015, 114, 96–113. [Google Scholar] [CrossRef]
- Gonzalez-de-Soto, M.; Emmi, L.; Benavides, C.; García, I.; Gonzalez-de-Santos, P. Reducing air pollution with hybrid-powered robotic tractors for precision agriculture. Biosyst. Eng. 2016, 143, 79–94. [Google Scholar] [CrossRef]
- Rovira-Más, F.; Chatterjee, I.; Sáiz-Rubio, V. The role of GNSS in the navigation strategies of cost-effective agricultural robots. Comput. Electron. Agric. 2015, 112, 172–183. [Google Scholar]
- Chosa, T.; Omine, M.; Itani, K. Dynamic performance of global positioning system velocity sensor for extremely accurate positioning. Biosyst. Eng. 2007, 97, 3–9. [Google Scholar] [CrossRef]
- Slaughter, D.C.; Giles, D.K.; Downey, D. Autonomous robotic weed control systems: A review. Comput. Electron. Agric. 2008, 61, 63–78. [Google Scholar] [CrossRef]
- Piyathulaka, L.; Munasinghe, R. Vision-only outdoor localization of two-wheel tractor for autonomous operation in agricultural fields. In Proceedings of the 2011 6th International Conference on Industrial and Information Systems, Kandy, Sri Lanka, 16–19 August 2011. [Google Scholar]
- Wang, Q.; Zhang, Q.; Rovira-Más, F.; Tian, L. Stereovision-based lateral offset measurement for vehicle navigation in cultivated stubble fields. Biosyst. Eng. 2011, 109, 258–265. [Google Scholar] [CrossRef]
- Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999. [Google Scholar]
- Bay, H.; Tuytelaars, T.; Gool, L.V. Surf: Speeded up robust features. In Computer Vision—ECCV 2006, Proceedings of the 9th European Conference on Compute Vision, Graz, Austria, 7 May 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 404–417. [Google Scholar]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to Sift or Surf. In Proceedings of the 2011 International Conference on Computer Vision, Crete, Greece, 22–24 June 2011; pp. 2564–2571. [Google Scholar]
- Mair, E.; Hager, G.D.; Burschka, D.; Suppa, M.; Hirzinger, G. Adaptive and generic corner detection based on the accelerated segment test. In Computer Vision—ECCV 2010, Proceedings of the 11th European Conference on Compute Vision, Heraklion, Crete, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 183–196. [Google Scholar]
- Leutenegger, S.; Chli, M.; Siegwart, R.Y. Brisk: Binary robust invariant scalable keypoints. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2548–2555. [Google Scholar]
- Alahi, A.; Ortiz, R.; Vandergheynst, P. FREAK: Fast Retina Keypoint. In Proceedings of the 2012 IEEE Conference on Computer Visio and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 510–517. [Google Scholar]
- Ericson, S.K.; Åstrand, B.S. Analysis of two visual odometry systems for use in an agricultural field environment. Biosyst. Eng. 2018, 166, 116–125. [Google Scholar] [CrossRef]
- Zamana, S.; Comba, L.; Biglia, A.; Aimonino, D.R.; Barge, P.; Gay, P. Cost-effective visual odometry system for vehicle motion control in agricultural environments. Comput. Electron. Agric. 2019, 162, 82–94. [Google Scholar] [CrossRef]
- Jiang, D.; Yang, L.; Li, D.; Gao, F.; Tian, L.; Li, L. Development of a 3D ego-motion estimation system for an autonomous agricultural vehicle. Biosyst. Eng. 2014, 121, 150–159. [Google Scholar] [CrossRef]
- Auat Cheein, F.; Steiner, G.; Perez Paina, G.; Carelli, R. Optimized EIF-SLAM algorithm for precision agriculture mapping based on stems detection. Comput. Electron. Agric. 2011, 78, 195–207. [Google Scholar] [CrossRef]
- Hiremath, S.; Evert, F.K.; Braak, C.; Stein, A.; Heijden, G. Image-based particle filtering for navigation in a semi-structured agricultural environment. Biosyst. Eng. 2014, 121, 85–95. [Google Scholar] [CrossRef]
- Strasdat, H.; Montiel, J.M.M.; Davison, A.J. Visual SLAM: Why filter? Image Vis. Comput. 2012, 30, 65–77. [Google Scholar] [CrossRef]
- Strasdat, H.; Davison, A.J.; Montiel, J.M.M.; Konolige, K. Double window optimisation for constant time visual SLAM. In Proceedings of the 2011 IEEE International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2352–2359. [Google Scholar]
- Castro, G.; Nitsche, M.A.; Pire, T.; Fischer, T.; Cristóforis, P.D. Efficient on-board Stereo SLAM through constrained-covisibility strategies. Robot. Auton. Syst. 2019, 116, 192–205. [Google Scholar] [CrossRef]
- Mouragnon, E.; Lhuillier, M.; Dhome, M.; Dekeyser, F.; Sayd, P. Real-time localization and 3D reconstruction. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 2006; pp. 17–22. [Google Scholar]
- Klein, G.; Murray, D. Parallel tracking and mapping for small AR workspaces. In Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, Nara, Japan, 13–16 November 2007; pp. 1–10. [Google Scholar]
- Mur-Artal, P.; Tardós, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [Google Scholar] [CrossRef]
- Pire, T.; Fischer, T.; Civera, J.; Cristóforis, P.D.; Berlles, J.J. Stereo parallel tracking and mapping for robot localization. In Proceedings of the 2015 IEEE/RSJ International Workshop on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 1373–1378. [Google Scholar]
- Rosten, E.; Drummond, T. Machine learning for high-speed corner detection. In Proceedings of the 9th European Conference on Computer Vision, Graz, Austria, 7 May 2006; pp. 430–443. [Google Scholar]
- Calonder, M.; Lepetit, V.; Strecha, C.; Fua, P. BRIEF: Binary robust independent elementary features. In Proceedings of the 11th European Conference on Computer Vision, Heraklion, Greece, 5–11 September 2010; pp. 778–792. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Read. Comput. Vis. 1987, 24, 726–740. [Google Scholar] [CrossRef]
- Lepetit, V.; Moreno-Noguer, F.; Fua, P. EPnP: An Accurate O(n) Solution to the PnP Problem. Int. J. Comput. Vis. 2009, 81, 155–166. [Google Scholar] [CrossRef]
- Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. G2o: A general framework for graph optimization. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 9–13. [Google Scholar]
- Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.; Ng, A. ROS: An open-source Robot Operating System. In ICRA Workshop on Open Source Software; IEEE: Piscataway, NJ, USA, 2009; pp. 1–5. [Google Scholar]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
- Endres, J.; Engelhard, N.; Endres, F.; Burgard, W.; Cremers, D. A benchmark for the evaluation of RGB-D SLAM systems. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 573–580. [Google Scholar]
- Williams, B.; Cummins, M.; Neira, J.; Newman, P.; Reid, I.; Tardós, J. A comparison of loop closing techniques in monocular slam. Robot. Auton. Syst. 2009, 57, 1188–1197. [Google Scholar] [CrossRef] [Green Version]
Image Format | 2K/1080P/720P |
---|---|
Frame rate | 60/30/15 (Hz) |
Lens FOV | 110° |
Pixel size | 2 μm |
Sensor size | 1/3″ |
Shutter | Sync. Rolling Shutter |
Baseline | 120 mm |
Connection | USB3.0 |
Sequence # | Difficulty | Length (m) | Duration (s) | Frames | Particularities |
---|---|---|---|---|---|
Seq. 01 | easy | 96.4 | 116.3 | 3489 | Straight Line |
Seq. 02 | easy | 126.3 | 152.8 | 4584 | Curved Line |
Seq. 03 | medium | 157.9 | 186.3 | 5586 | Intersecting Line |
Seq. 04 | medium | 178.6 | 229.4 | 6882 | Rectangle |
Seq. 05 | difficult | 161.9 | 248.6 | 7458 | U-shape |
Seq. 06 | difficult | 372.7 | 429.4 | 12,882 | R-shape |
Thread | Operation | Median (ms) | Mean (ms) | Std (ms) |
---|---|---|---|---|
Front-end | Pre-processing | 11.6 | 12.2 | 2.3 |
FREAK Extraction | 43.8 | 45.3 | 4.2 | |
Stereo Matching | 26.5 | 29.1 | 2.8 | |
RANSAC | 3.2 | 3.5 | 1.2 | |
EPnP + Motion-only BA | 8.3 | 10.3 | 3.5 | |
Keyframe Selection | 1.8 | 2.1 | 0.6 | |
Total | 95.2 | 101.5 | 8.7 | |
Back-end | Keyframe Insertion | 10.8 | 10.6 | 2.8 |
landmarks Creation | 53.1 | 44.5 | 18.7 | |
Local BA | 203.7 | 215.3 | 81.2 | |
Local map refinement | 5.3 | 6.6 | 1.5 | |
Total | 272.9 | 297.0 | 94.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Chen, J.; Guan, Z.; Li, Y.; Cheng, K.; Cui, Z. Stereovision-Based Ego-Motion Estimation for Combine Harvesters. Sensors 2022, 22, 6394. https://doi.org/10.3390/s22176394
Chen H, Chen J, Guan Z, Li Y, Cheng K, Cui Z. Stereovision-Based Ego-Motion Estimation for Combine Harvesters. Sensors. 2022; 22(17):6394. https://doi.org/10.3390/s22176394
Chicago/Turabian StyleChen, Haiwen, Jin Chen, Zhuohuai Guan, Yaoming Li, Kai Cheng, and Zhihong Cui. 2022. "Stereovision-Based Ego-Motion Estimation for Combine Harvesters" Sensors 22, no. 17: 6394. https://doi.org/10.3390/s22176394
APA StyleChen, H., Chen, J., Guan, Z., Li, Y., Cheng, K., & Cui, Z. (2022). Stereovision-Based Ego-Motion Estimation for Combine Harvesters. Sensors, 22(17), 6394. https://doi.org/10.3390/s22176394