ADTIDO: Detecting the Tired Deck Officer with Fusion Feature Methods
Abstract
:1. Introduction
2. Related Works
3. Materials
3.1. EEG Signals Collecting
3.2. EEG Signals Processing
3.3. Fatigue State Determination
4. Methods
4.1. Feature Extraction
4.1.1. ECD Feature Extraction
4.1.2. EEG Features Extraction
4.2. Feature Classification
4.2.1. Classifiers Based on RNN
4.2.2. Other Classification Algorithms
5. Results and Discussion
5.1. Feature Extraction Results
5.2. Classification Results
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fan, S.; Zhang, J.; Blanco-Davis, E.; Yang, Z.; Wang, J.; Yan, X. Effects of seafarers’ emotion on human performance using bridge simulation. Ocean Eng. 2018, 170, 111–119. [Google Scholar] [CrossRef]
- Fan, S.; Yan, X.; Zhang, J.; Wang, J. A Review on Human Factors in Maritime Transportation Using Seafarers’ Physiological Data. In Proceedings of the 2017 4th International Conference on Transportation Information and Safety (ICTIS), Banff, AB, Canada, 8–10 August 2017. [Google Scholar]
- Gao, Z.; Li, S.; Cai, Q.; Dang, W.; Yang, Y.; Mu, C.; Hui, P. Relative Wavelet Entropy Complex Network for Improving EEG-Based Fatigue Driving Classification. IEEE Trans. Instrum. Meas. 2019, 68, 2491–2497. [Google Scholar] [CrossRef]
- Han, C.; Sun, X.; Yang, Y.; Che, Y.; Qin, Y. Brain Complex Network Characteristic Analysis of Fatigue during Simulated Driving Based on Electroencephalogram Signals. Entropy 2019, 21, 353. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Liu, F.; Wang, P. Eeg-Based Multiple Entropy Analysis for Assessing Driver Fatigue. In Proceedings of the 2019 5th International Conference on Transportation Information and Safety (ICTIS), Liverpool, UK, 14–17 July 2019. [Google Scholar]
- Leung, A.W.; Chan, C.C.; Ng, J.J.; Wong, P.C. Factors contributing to officers’ fatigue in high-speed maritime craft operations. Appl. Ergon. 2006, 37, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Blanco-Davis, E.; Zhang, J.; Bury, A.; Warren, J.; Yang, Z.; Yan, X.; Wang, J.; Fairclough, S. The Role of the Prefrontal Cortex and Functional Connectivity during Maritime Operations: An fNIRS study. Brain Behav. 2020, 11, e01910. [Google Scholar] [CrossRef]
- Monteiro, T.G.; Skourup, C.; Zhang, H. A Task Agnostic Mental Fatigue Assessment Approach Based on Eeg Frequency Bands for Demanding Maritime Operation. IEEE Instrum. Meas. Mag. 2021, 24, 82–88. [Google Scholar] [CrossRef]
- Arefnezhad, S.; Hamet, J.; Eichberger, A.; Frühwirth, M.; Ischebeck, A.; Koglbauer, I.V.; Moser, M.; Yousefi, A. Driver drowsiness estimation using EEG signals with a dynamical encoder–decoder modeling framework. Sci. Rep. 2022, 12, 2650. [Google Scholar] [CrossRef]
- Li, G.; Chung, W.-Y. Estimation of Eye Closure Degree Using EEG Sensors and Its Application in Driver Drowsiness Detection. Sensors 2014, 14, 17491–17515. [Google Scholar] [CrossRef]
- Williams, N.S.; McArthur, G.M.; De Wit, B.; Ibrahim, G.; Badcock, N.A. A validation of Emotiv EPOC Flex saline for EEG and ERP research. PeerJ 2020, 8, e9713. [Google Scholar] [CrossRef]
- Liu, X.; Li, G.; Wang, S.; Wan, F.; Sun, Y.; Wang, H.; Bezerianos, A.; Li, C.; Sun, Y. Toward practical driving fatigue detection using three frontal EEG channels: A proof-of-concept study. Physiol. Meas. 2021, 42, 44003. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Ferri, R.; Cosentino, F.I.; Elia, M.; Musumeci, S.A.; Marinig, R.; Bergonzi, P. Relationship between Delta, Sigma, Beta, and Gamma EEG bands at REM sleep onset and REM sleep end. Clin. Neurophysiol. 2001, 112, 2046–2052. [Google Scholar] [CrossRef]
- Magnuson, J.R.; Doesburg, S.M.; McNeil, C.J. Development and recovery time of mental fatigue and its impact on motor function. Biol. Psychol. 2021, 161, 108076. [Google Scholar] [CrossRef]
- Allen, P.; Wadsworth, E.; Smith, A. Seafarers’ fatigue: A review of the recent literature. Int. Marit. Health 2008, 59, 81. [Google Scholar]
- Gong, C.; Zhang, X.; Niu, Y. Identification of epilepsy from intracranial EEG signals by using different neural network models. Comput. Biol. Chem. 2020, 87, 107310. [Google Scholar] [CrossRef]
- Gong, C.; Zhou, X.; Niu, Y. Pattern recognition of epilepsy using parallel probabilistic neural network. Appl. Intell. 2021, 52, 2001–2012. [Google Scholar] [CrossRef]
- Jiao, Y.; Deng, Y.; Luo, Y.; Lu, B.-L. Driver sleepiness detection from EEG and EOG signals using GAN and LSTM networks. Neurocomputing 2020, 408, 100–111. [Google Scholar] [CrossRef]
- Khairuddin, I.M.; Sidek, S.N.; Majeed, A.P.A.; Razman, M.A.M.; Puzi, A.A.; Yusof, H.M. The Classification of Movement Intention through Machine Learning Models: The Identification of Significant Time-Domain Emg Features. PeerJ Comput. Sci. 2021, 7, e379. [Google Scholar] [CrossRef]
- Peng, Y.; Wong, C.M.; Wang, Z.; Rosa, A.C.; Wang, H.; Wan, F. Fatigue detection in SSVEP-BCIs based on wavelet entropy of EEG. IEEE Access 2021, 9, 114905–114913. [Google Scholar] [CrossRef]
- Li, L.; Yang, L.; Zeng, Y. Improving Sentiment Classification of Restaurant Reviews with Attention-Based Bi-GRU Neural Network. Symmetry 2021, 13, 1517. [Google Scholar] [CrossRef]
- Wang, X.; Gao, X.; Zhang, Y.; Fei, X.; Chen, Z.; Wang, J.; Zhang, Y.; Lu, X.; Zhao, H. Land-Cover Classification of Coastal Wetlands Using the RF Algorithm for Worldview-2 and Landsat 8 Images. Remote Sens. 2019, 11, 1927. [Google Scholar] [CrossRef] [Green Version]
- Nakatani, H.; Kawasaki, M.; Kitajo, K.; Yamaguchi, Y. Frequency-dependent effects of EEG phase resetting on reaction time. Neurosci. Res. 2021, 172, 51–62. [Google Scholar] [CrossRef]
Channel | ECD | A1 | A2 | A3 | A4 | … | F3 | Label | |
---|---|---|---|---|---|---|---|---|---|
Sample _1 | FP1 | 0.261 | −0.834 | −0.824 | 0.858 | 0.291 | … | 0.857 | 1 |
FP2 | 0.261 | −0.599 | −0.586 | 0.634 | 0.071 | 0.643 | 1 | ||
FZ | 0.261 | −0.882 | −0.866 | 0.900 | 0.277 | 0.881 | 1 | ||
Sample _2101 | FP1 | 0.467 | −0.264 | −0.227 | 0.281 | 0.003 | 0.274 | 2 | |
FP2 | 0.467 | −0.299 | −0.226 | 0.280 | 0.489 | 0.372 | 2 | ||
FZ | 0.467 | −0.289 | −0.252 | 0.307 | 0.040 | 0.359 | 2 | ||
Sample _5400 | FP1 | 0.265 | 0.033 | 0.080 | 0.000 | 0.508 | 0.032 | 3 | |
FP2 | 0.265 | 0.601 | 0.666 | 0.553 | 0.109 | 0.555 | 3 | ||
FZ | 0.265 | −0.840 | −0.842 | 0.871 | 2.023 | 0.851 | 3 |
Author | Features | Methods | Results (CA) |
---|---|---|---|
This Article | eECD, MAV, SD, RMS, SE | DWT, Bi-GRU | 90.19% |
Gong, C. [17] | MAV, SD, RMS | DWT, P-NN | 85.15% |
Hu, J. [5] | SE, FE, AE, PE | RF | 83.27% |
Channel | Pred Label | ADTIDO Label | Real Label | |
---|---|---|---|---|
Sample _1801 | FP1 | 1 | 1 | 1 |
FP2 | 1 | 1 | 1 | |
FZ | 1 | 1 | 1 | |
Sample _1804 | FP1 | 1 | 1 | 1 |
FP2 | 2 | 1 | 1 | |
FZ | 1 | 1 | 1 | |
Sample _3918 | FP1 | 3 | 0 | 2 |
FP2 | 1 | 0 | 2 | |
FZ | 2 | 0 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Fu, Y.; Ouyang, R.; Liu, Y.; Hou, X. ADTIDO: Detecting the Tired Deck Officer with Fusion Feature Methods. Sensors 2022, 22, 6506. https://doi.org/10.3390/s22176506
Li C, Fu Y, Ouyang R, Liu Y, Hou X. ADTIDO: Detecting the Tired Deck Officer with Fusion Feature Methods. Sensors. 2022; 22(17):6506. https://doi.org/10.3390/s22176506
Chicago/Turabian StyleLi, Chenghao, Yuhui Fu, Ruihong Ouyang, Yu Liu, and Xinwen Hou. 2022. "ADTIDO: Detecting the Tired Deck Officer with Fusion Feature Methods" Sensors 22, no. 17: 6506. https://doi.org/10.3390/s22176506
APA StyleLi, C., Fu, Y., Ouyang, R., Liu, Y., & Hou, X. (2022). ADTIDO: Detecting the Tired Deck Officer with Fusion Feature Methods. Sensors, 22(17), 6506. https://doi.org/10.3390/s22176506