Development and Testing of the A1 Volumetric Air Sampler, an Automatic Pollen Trap Suitable for Long-Term Monitoring of eDNA Pollen Diversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Microscopy and Statistical Analyses
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Buters, J.T.M.; Antunes, C.; Galveias, A.; Bergmann, K.C.; Thibaudon, M.; Galán, C.; Schmidt-Weber, C.; Oteros, J. Pollen and spore monitoring in the world. Clin. Transl. Allergy. 2018, 8, 9. [Google Scholar] [PubMed]
- Hofmann, F.; Otto, M.; Wosniok, W. Maize pollen deposition in relation to distance from the nearest pollen source under common cultivation—results of 10 years of monitoring. Env. Sci. Eur. 2014, 26, 24. [Google Scholar]
- Deiner, K.; Bik, H.M.; Mächler, E.; Seymour, M.; Lacoursière-Roussel, A.; Altermatt, F.; Creer, S.; Bista, I.; Lodge, D.M.; Vere, N.; et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 2017, 26, 5872–5895. [Google Scholar] [PubMed]
- Lacoursière-Roussel, A.; Howland, K.; Normandeau, E.; Grey, E.K.; Archambault, P.; Deiner, K.; Lodge, D.M.; Hernandez, C.; Leduc, N.; Bernatchez, L. eDNA metabarcoding as a new surveillance approach for coastal Arctic biodiversity. Ecol. Evol. 2018, 8, 7763–7777. [Google Scholar] [PubMed]
- Gregory, P.H. The Microbiology of the atmosphere. Neth. J. Plant Pathol. 1973, 79, 1–377. [Google Scholar]
- Edmonds, R.L. Aerobiology: The Ecological Systems Approach; Dowden, Hutchinson & Ross: Stroudsburg, PA, USA, 1979. [Google Scholar]
- Frenz, D.A. Comparing pollen and spore counts collected with the Rotorod Sampler and Burkard spore trap. Ann. Allergy Asthma Immunol. 1999, 83, 341–349. [Google Scholar]
- Giesecke, T.; Fontana, S.L.; van der Knaap, W.O.; Pardoe, H.S.; Pidek, I.A. From early pollen trapping experiments to the Pollen Monitoring Programme. Veget. Hist. Archaeobot. 2010, 19, 247–258. [Google Scholar]
- Parker, M.L.; McDonald, M.R.; Boland, G.J. Evaluation of Air Sampling and Detection Methods to Quantify Airborne Ascospores of Sclerotinia sclerotiorum. Plant Disease. 2014, 98, 32–42. [Google Scholar]
- Hirst, J.M. An automatic volumetric spore trap. Ann. Appl. Biol. 1952, 39, 257–265. [Google Scholar]
- Levetin, E.; Rogers, C.A.; Hall, S.A. Comparison of pollen sampling with a Burkard Spore Trap and a Tauber Trap in a warm temperate climate. Grana 2000, 39, 294–302. [Google Scholar]
- Razmovski, V.; O'meara, T.; Hjelmroos, M.; Marks, G.; Tovey, E. Adhesive tapes as capturing surfaces in Burkard sampling. Grana 1998, 37, 305–310. [Google Scholar] [CrossRef]
- Peel, R.G.; Kennedy, R.; Smith, M.; Hertel, O. Relative efficiencies of the Burkard 7-Day.; Rotorod and Burkard Personal samplers for Poaceae and Urticaceae pollen under field conditions. Ann. Agric. Env. Med. 2014, 21, 8. [Google Scholar] [CrossRef] [PubMed]
- Torfs, S.; Van Poucke, K.; Van Campenhout, J.; Ceustermans, A.; Croes, S.; Bylemans, D.; Van Hemelrijck, W.; Keulemans, W.; Heungens, K. Venturia inaequalis trapped: Molecular quantification of airborne inoculum using volumetric and rotating arm samplers. Eur. J. Plant. Pathol. 2019, 155, 1319–1332. [Google Scholar] [CrossRef]
- Thomsen, P.F.; Kielgast, J.; Iversen, L.L.; Wiuf, C.; Rasmussen, M.; Gilbert, M.T.P.; Orlando, L.; Willerslev, E. Monitoring endangered freshwater biodiversity by environmental DNA. Mol. Ecol. 2012, 21, 2565–2573. [Google Scholar] [CrossRef]
- Thomsen, P.F.; Willerslevm, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 2015, 183, 4–18. [Google Scholar] [CrossRef]
- Biggs, J.; Ewald, N.; Valentini, A.; Gaboriaud, C.; Dejean, T.; Griffiths, R.A.; Foster, J.; Wilkinson, J.W.; Arnell, A.; Brotherton, P.; et al. Using eDNA to develop a national citizen science-based monitoring program for the great crested newt (Triturus cristatus). Biol. Conserv. 2015, 183, 19–28. [Google Scholar] [CrossRef]
- Baksay, S.; Pornon, A.; Burrus, M.; Mariette, J.; Andalo, C.; Escaravage, N. Experimental quantification of pollen with DNA metabarcoding using ITS1 and trnL. Sci. Rep. 2020, 10, 4202. [Google Scholar] [CrossRef] [Green Version]
- Leontidou, K.; Vokou, D.; Sandionigi, A.; Bruno, A.; Lazarina, M.; De Groeve, J.; Li, M.; Varotto, C.; Girardi, M.; Casiraghi, M.; et al. Plant biodiversity assessment through pollen DNA metabarcoding in Natura 2000 habitats (Italian Alps). Sci. Rep. 2021, 11, 18226. [Google Scholar] [CrossRef]
- Cristescu, M.E.; Hebert, P.D.N. Uses and misuses of environmental DNA in biodiversity science and conservation. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 209–230. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual comparisons by ranking methods. Biometrics 1945, 1, 80–83. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 1 January 2022).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Lu, X.; Herrmann, M.; Mosbrugger, V.; Yao, T.; Zhu, L. Airborne pollen in the Nam Co Basin and its implication for palaeoenvironmental reconstruction. Rev. Palaeobot. Palynol. 2010, 163, 104–112. [Google Scholar] [CrossRef]
- Johnsen, C.R.; Weeke, E.R.; Nielsen, J.; Jensen, J.; Mosbech, H.; Frølund, L.; Madsen, F.; Poulsen, L.K. Aeroallergen analyses and their clinical relevance.: II. Sampling by high-volume airsampler with immunochemical quantification versus Burkard pollen trap sampling with morphologic quantification. Allergy 1992, 47, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Tomás, C.; Candau, P.; Minero, F.J.G. A comparative study of atmospheric pollen concentrations collected with Burkard and Cour samplers, Seville (Spain), 1992–1994. Grana 1997, 36, 122–128. [Google Scholar] [CrossRef]
- Crisp, H.C.; Gomez, R.A.; White, K.M.; Quinn, J.M. A side-by-side comparison of Rotorod and Burkard pollen and spore collections. Ann. Allergy Asthma Immunol. 2013, 111, 118–125. [Google Scholar] [CrossRef]
- Hayat, M.Q.; Ashraf, M.; Khan, M.A.; Yasmin, G.; Shaheen, N.; Jabeen, S. Palynological study of the genus Artemisia (Asteraceae) and its systematic implications. Pak. J. Bot. 2010, 42, 751–763. [Google Scholar]
Repeats | COUNTS PER TUBE | Average | Total | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fagus sylvatica/Burkard Multi-Vial Cyclone Sampler | ||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
1 | 120 | 125 | 103 | 109 | 94 | 131 | 100 | 128 | 150 | 127 | 118.7 | 11,870 |
2 | 107 | 109 | 151 | 158 | 90 | 101 | 126 | 90 | 105 | 120 | 115.7 | 11,570 |
3 | 9 | 10 | 15 | 22 | 65 | 12 | 23 | 56 | 31 | 12 | 25.5 | 2550 |
4 | 40 | 46 | 13 | 86 | 27 | 135 | 15 | 11 | 26 | 37 | 43.6 | 4360 |
5 | 11 | 13 | 23 | 9 | 14 | 17 | 14 | 14 | 46 | 70 | 23.1 | 2310 |
Helianthus annus/Burkard Multi-Vial Cyclone Sampler | ||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
1 | 224 | 270 | 230 | 310 | 391 | 305 | 363 | 350 | 301 | 263 | 300.7 | 30,070 |
2 | 243 | 206 | 276 | 292 | 203 | 198 | 225 | 227 | 170 | 203 | 224.3 | 22,430 |
3 | 51 | 50 | 56 | 84 | 374 | 43 | 72 | 224 | 144 | 67 | 116.5 | 11,650 |
4 | 273 | 194 | 50 | 371 | 105 | 872 | 37 | 25 | 171 | 53 | 215.1 | 21,510 |
5 | 57 | 43 | 87 | 23 | 122 | 37 | 48 | 91 | 153 | 206 | 86.7 | 8670 |
Zea mays/Burkard Multi-Vial Cyclone Sampler | ||||||||||||
1 | 12 | 17 | 18 | 19 | 11 | 26 | 14 | 22 | 30 | 20 | 18.9 | 1890 |
2 | 48 | 46 | 60 | 32 | 31 | 34 | 26 | 22 | 15 | 12 | 32.6 | 3260 |
3 | 3 | 5 | 7 | 6 | 9 | 5 | 4 | 11 | 12 | 3 | 6.5 | 650 |
4 | 15 | 8 | 4 | 13 | 7 | 47 | 7 | 9 | 15 | 11 | 13.6 | 1360 |
5 | 3 | 5 | 11 | 3 | 6 | 9 | 5 | 7 | 17 | 23 | 8.9 | 890 |
Fagus sylvatica/A1 volumetric air sampler | ||||||||||||
1 | 130 | 106 | 121 | 150 | 163 | 153 | 158 | 207 | 172 | 173 | 153.3 | 15,330 |
2 | 12 | 38 | 35 | 1200 | 393 | 17 | 37 | 40 | 39 | 41 | 185.2 | 18,520 |
3 | 1 | 1 | 2 | 1 | 2 | 5 | 15 | 4 | 12 | 15 | 5.8 | 580 |
4 | 2 | 4 | 3 | 15 | 13 | 11 | 9 | 11 | 25 | 29 | 12.2 | 1220 |
5 | 133 | 73 | 113 | 177 | 130 | 87 | 40 | 53 | 47 | 40 | 89.3 | 8930 |
Helianthus annuus/A1 volumetric air sampler | ||||||||||||
1 | 225 | 211 | 283 | 223 | 230 | 257 | 242 | 281 | 191 | 263 | 240.6 | 24,060 |
2 | 27 | 81 | 90 | 1700 | 683 | 33 | 67 | 62 | 85 | 65 | 289.3 | 28,930 |
3 | 2 | 3 | 4 | 1 | 4 | 20 | 43 | 11 | 43 | 53 | 18.4 | 1840 |
4 | 10 | 12 | 17 | 21 | 15 | 23 | 33 | 122 | 50 | 65 | 36.8 | 3680 |
5 | 100 | 240 | 200 | 430 | 398 | 175 | 90 | 87 | 117 | 93 | 193 | 19,300 |
Zea mays/A1 volumetric air sampler | ||||||||||||
1 | 21 | 13 | 40 | 25 | 26 | 37 | 23 | 36 | 23 | 16 | 26 | 2600 |
2 | 7 | 12 | 11 | 120 | 29 | 13 | 13 | 9 | 11 | 17 | 24.2 | 2420 |
3 | 1 | 1 | 1 | 1 | 1 | 3 | 7 | 2 | 5 | 4 | 2.6 | 260 |
4 | 1 | 3 | 1 | 5 | 4 | 7 | 5 | 17 | 13 | 9 | 6.5 | 650 |
5 | 50 | 57 | 30 | 66 | 33 | 23 | 10 | 15 | 19 | 23 | 32.6 | 3260 |
Species | p Based on Global ANOVA | p Based on Global Kruskal–Wallis Test | p Based on Kruskal–Wallis Test | ||
---|---|---|---|---|---|
HA vs. FS | HA vs. ZM | FS vs. ZM | |||
A1 wind trap | 0.06 | 0.9 | 0.6 | 0.06 | 0.7 |
Burkard spore trap | 0.00 ** | 0.00 ** | 0.02 * | 0.00 ** | 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, G.; Hegge, A.; Gemeinholzer, B. Development and Testing of the A1 Volumetric Air Sampler, an Automatic Pollen Trap Suitable for Long-Term Monitoring of eDNA Pollen Diversity. Sensors 2022, 22, 6512. https://doi.org/10.3390/s22176512
Khan G, Hegge A, Gemeinholzer B. Development and Testing of the A1 Volumetric Air Sampler, an Automatic Pollen Trap Suitable for Long-Term Monitoring of eDNA Pollen Diversity. Sensors. 2022; 22(17):6512. https://doi.org/10.3390/s22176512
Chicago/Turabian StyleKhan, Gulzar, Albrecht Hegge, and Birgit Gemeinholzer. 2022. "Development and Testing of the A1 Volumetric Air Sampler, an Automatic Pollen Trap Suitable for Long-Term Monitoring of eDNA Pollen Diversity" Sensors 22, no. 17: 6512. https://doi.org/10.3390/s22176512
APA StyleKhan, G., Hegge, A., & Gemeinholzer, B. (2022). Development and Testing of the A1 Volumetric Air Sampler, an Automatic Pollen Trap Suitable for Long-Term Monitoring of eDNA Pollen Diversity. Sensors, 22(17), 6512. https://doi.org/10.3390/s22176512