Control of Brushless Direct-Current Motors Using Bioelectric EMG Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measuring System
2.2. Measurement Method
- Rg is the resistance value of the calibration resistor [Ω],
- G is the circuit amplification required.
- Uout is the output voltage of the inverting amplifier circuit [V],
- Uin is the input voltage of the inverting amplifier circuit [V].
- Fg is the cutoff frequency of the first-order high-pass filter [Hz],
- R is the resistance of the resistor R9 [Ω],
- C is the capacitor capacity C3 [F].
- G(s) is the operator transmittance of the first-order high-pass filter system,
- R is the resistance of the resistor R9 [Ω],
- C is the capacitor capacity C3 [F].
3. Results
3.1. Examination of the EMG Analog Data Processing System
3.2. Test of the BLDC Motor Rotation Speed and Direction Control System Based on the EMG Signal
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glowinski, S.; Błażejewski, A. SPIDER as a Rehabilitation Tool for Patients with Neurological Disabilities: The Preliminary Research. J. Pers. Med. 2020, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Cifrek, M.; Medved, V.; Tonković, S.; Ostojić, S. Surface EMG based muscle fatigue evaluation in biomechanics. Clin. Biomech. 2009, 24, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Supuk, T.G.; Skelin, A.K.; Cic, M. Design, development and testing of a low-cost sEMG system and its use in recording muscle activity in human gait. Sensors 2014, 14, 8235–8258. [Google Scholar] [CrossRef] [PubMed]
- Parker, P.A.; Scott, R.N. Myoelectric control of prostheses. Crit. Rev. Biomed. Eng. 1986, 13, 283–310. [Google Scholar]
- Resnik, J.; Huang, H.; Winslow, A.; Crouch, D.L.; Zhang, F.; Wolk, N. Evaluation of EMG pattern recognition for upper limb prosthesis control: A zase study in comparison with direct myoelectric control. J. NeuroEng. Rehabl. 2018, 15, 23. [Google Scholar] [CrossRef]
- Scheme, E.; Englehart, K. Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use. J. Rehabil. Res. Dev. 2011, 48, 643. [Google Scholar] [CrossRef]
- Raez, M.B.; Hussain, M.S.; Mohd-Yasin, F. Techniques of EMG signal analysis: Detection, processing, classification and applications. Biol. Proced. Online 2006, 8, 11–35. [Google Scholar] [CrossRef]
- Jarque-Bou, N.J.; Sancho-Bru, J.L.; Vergara, M. A Systematic Review of EMG Applications for the Characterization of Forearm and Hand Muscle Activity during Activities of Daily Living: Results, Challenges, and Open Issues. Sensor 2021, 21, 3035. [Google Scholar] [CrossRef]
- Oskoei, M.A.; Hu, H. Myoelectric control systems—A survey. Biomed. Signal Process. Control 2007, 2, 275–294. [Google Scholar] [CrossRef]
- Chowdhury, R.H.; Reaz, M.B.I.; Ali, M.A.B.M.; Bakar, A.A.A.; Chellappan, K.; Chang, T.G. Surface Electromyography Signal Processing and Classification Techniques. Sensors 2013, 13, 12431–12466. [Google Scholar] [CrossRef]
- Borysiuk, Z. Elektromiografia w Sporcie. Wybrane Zastosowania Praktyczne; Wydział Wychowania Fizycznego i Fizjoterapii Politechniki Opolskiej oraz Studio IMPRESO: Opole, Poland, 2005. (In Polish) [Google Scholar]
- Manus, M.L.; De Vito, D.; Lowery, M.M. Analysis and Biophysics of Surface EMG for Physiotherapists and Kinesiologists: Toward a Common Language with Rehabilitation Engineers. Front. Neurol. 2020, 11, 576729. [Google Scholar] [CrossRef]
- Manzur-Valdivia, H.; Alvarez-Ruf, J. Surface Electromyography in Clinical Practice. A Perspective from a Developing Country. Front Neurol. 2020, 11, 578829. [Google Scholar] [CrossRef]
- Glowinski, S.; Blazejewski, A. An exoskeleton arm optimal configuration determination using inverse kinematics and genetic algorithm. Acta Bioeng. Biomech. 2019, 21, 45–53. [Google Scholar] [CrossRef]
- Nizam, U.A.; Kenneth, S.; Badlisha, A.; Matiur, R.; Anamul, I.; Asraf, A. Surface Electromyography Assessment of the Biceps Brachii Muscle between the Endplate Region and Distal Tendon insertion: Comparison in Terms of Gender, Dominant Arm and Contraction. J. Phys. Ther. Sci. 2013, 25, 3–6. [Google Scholar]
- Janpan, I.; Chaisricharoen, R.; Boonyanant, P. Control of the Brusheless DC Motor in Combine Mode. Procedia Eng. 2012, 32, 279–285. [Google Scholar] [CrossRef]
- Komatsu, Y.; Tur-Amgalan, A.; Yoshihiko, A.; Syed, A.K.Z.; Takamura, K. Design of the Unidirectional Current Type Coreless DC Brushless Motor for Electrical Vehicle with Low Cost and High Efficiency. In Proceedings of the SPEEDAM 2010, Pisa, Italy, 14–16 June 2010; pp. 1036–1039. [Google Scholar]
- Attar, A.; Bouchnaif, J.; Grari, K. Control of Brushless DC motors using sensorless Back-EMF integration method. Mater. Proc. 2021, 45, 7438–7443. [Google Scholar] [CrossRef]
- Ubare, P.; Ingole, D.; Sonawane, D.N. Nonlinear Model Predictive Control of BLDC Motor with State Estimation. IFAC-PapersOnLine 2021, 54, 107–112. [Google Scholar] [CrossRef]
- Skóra, M.; Kowalski, C. Wpływ uszkodzeń czujników położenia wirnika na pracę napędu z silnikiem PM BLDC. Prace Naukowe Instytutu Maszyn Napędów i Pomiarów Elektrycznych Politechniki Wrocławskiej 2013, 69, 357–366. (In Polish) [Google Scholar]
- Kunikowski, W.; Czerwiński, E.; Olejnik, P.; Awrejcewicz, J. An Overwiev of ATmega AVR Microcontollers Used in Scientific Research and Industrial Applications. PAR Pomiary Automatyka Kontrola 2015, 1, 15–20. [Google Scholar] [CrossRef]
- Zhang, D.A.; Dong, D.C.; Peng, H.T. Research on development of embedded uninterruptable power supply system for IOT-based mobile service. Comput. Electr. Eng. 2012, 38, 1377–1387. [Google Scholar] [CrossRef]
- Rodríguez-Tapia, B.; Soto, I.; Martínez, D.M.; Arballo, N.C. Myoelectric Interfaces and Related Applications: Current State of EMG Signal Processing–A Systematic Review. IEEE Access 2020, 8, 7792–7805. [Google Scholar] [CrossRef]
- Bi, L.; Feleke, A.G.; Guan, C. A review on EMG-based motor intention prediction of continuous human upper limb motion for human-robot collaboration. Biomed. Signal Process. Control 2019, 51, 113–127. [Google Scholar] [CrossRef]
- Fougner, A.; Stavdahl, Ø.; Kyberd, P.J.; Losier, Y.G.; Parker, P.A. Control of Upper Limb Prostheses: Terminology and Proportional Myoelectric Control—A Review. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 663–677. [Google Scholar] [CrossRef] [Green Version]
- Roche, A.D.; Rehbaum, H.; Farina, D.; Aszmann, A.C. Prosthetic Myoelectric Control Strategies: A Clinical Perspective. Curr. Surg. Rep. 2014, 2, 44. [Google Scholar] [CrossRef]
- Hargrove, L.J.; Miller, L.A.; Turner, K.; Kuiken, T.A. Myoelectric Pattern Recognition Outperforms Direct Control for Transhumeral Amputees with Targeted Muscle Reinnervation: A Randomized Clinical Trial. Sci. Rep. 2017, 7, 13840. [Google Scholar] [CrossRef]
- Leonardis, D.; Barsotti, M.; Loconsole, C.; Solazzi, M.; Troncossi, M.; Mazzotti, C.; Castelli, V.P.; Procopio, C.; Lamola, G. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation. IEEE Trans. Haptics 2015, 8, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.ni.com/pl-pl/search.html?q=NI+USB-6211+ (accessed on 10 January 2022).
- Available online: https://medycznysklep.com/pl/p/Elektrody-Przyssawkowe-AgAgCl/1 (accessed on 19 January 2022).
- Available online: https://pl.rs-online.com/web/p/wzmacniacze-instrumentacyjne/5230212?cm_mmc=PL-PPC-DS3A-_-google-_-DSA_PL_PL_Pólprzewodniki_Index-_-Wzmacniacze+instrumentacyjne%7C+Products-_-DYNAMIC+SEARCH+ADS&matchtype=&dsa-1653359455802&gclid=CjwKCAjw3K2XBhAzEiwAmmgrAh30vEGoZslZ7S48ArqP9Rpj3ATJ1TixkUVz428LEWMXDAPJSWfXmBoCq90QAvD_BwE&gclsrc=aw.ds (accessed on 25 January 2022).
- Takisi, H.; Burke, D.; Cui, L.; de Carvalho, M.; Kuwabara, S.; Nandedkar, S.D.; Rutkowe, S.; Stålberg, E.; van Putten, M.J.A.M.; Fuglsang-Frederiksen, A. Standards of instrumentation of EMG. Clin. Neurophysiol. 2020, 131, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, J.; Panizza, M.; Hallett, M. Principles of digital sampling of a physiologic signal. Electroencephalogr. Clin. Neurophysiol. 1993, 89, 349–358. [Google Scholar] [CrossRef]
- MATLAB 2020a; the MathWorks, Inc.: Natick, MA, USA, 2020.
- Available online: https://www.microchip.com/en-us/product/MCP3221 (accessed on 17 April 2022).
- Microchip. MCP3221 Low-Power 12-Bit A/D Converter with I2C Interface; Microchip Technology Inc.: Chandler, AZ, USA, 2016. [Google Scholar]
- Sudhan, R.A.; Kumar, M.G.; Prakash, A.U.; Devi, S.A.R.; Sathiya, P. Arduino ATMEGA-328 Microcontroler. IJIREEICE 2015, 3, 27–29. [Google Scholar] [CrossRef]
- Available online: https://www.testo.com/en-US/testo-470/p/0563-0470 (accessed on 25 June 2022).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glowinski, S.; Pecolt, S.; Błażejewski, A.; Młyński, B. Control of Brushless Direct-Current Motors Using Bioelectric EMG Signals. Sensors 2022, 22, 6829. https://doi.org/10.3390/s22186829
Glowinski S, Pecolt S, Błażejewski A, Młyński B. Control of Brushless Direct-Current Motors Using Bioelectric EMG Signals. Sensors. 2022; 22(18):6829. https://doi.org/10.3390/s22186829
Chicago/Turabian StyleGlowinski, Sebastian, Sebastian Pecolt, Andrzej Błażejewski, and Bartłomiej Młyński. 2022. "Control of Brushless Direct-Current Motors Using Bioelectric EMG Signals" Sensors 22, no. 18: 6829. https://doi.org/10.3390/s22186829
APA StyleGlowinski, S., Pecolt, S., Błażejewski, A., & Młyński, B. (2022). Control of Brushless Direct-Current Motors Using Bioelectric EMG Signals. Sensors, 22(18), 6829. https://doi.org/10.3390/s22186829