Efficient Clustering for Continuous Occupancy Mapping Using a Mixture of Gaussian Processes †
Abstract
:1. Introduction
- Dirichlet process-based clustering is investigated for occupancy mapping which does not require a prior on the number of clusters;
- Geometric feature-based clustering utilizing line tracking is developed to enhance the accuracy;
- Clustering and mapping performances of both methods are compared and analyzed.
2. Related Work
3. Building Occupancy Maps
3.1. Data Clustering
3.1.1. Dirichlet Process: DP-Clustering
3.1.2. Line Tracking: LT-Clustering
Algorithm 1 Line tracking |
Construct a line with first two points. repeat if the next point is close to the line then add it to the set of points and fit the line to them. else create a new line with the next two points. end if until no points are remained |
3.2. Local Occupancy Mapping
3.3. Merging Local Occupancy Maps
3.4. Computational Complexity
4. Experimental Results
4.1. Simulation Data
4.2. Clustering Performance
4.3. Map Accuracy
4.4. Computational Time
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moravec, H.; Elfes, A. High resolution maps from wide angle sonar. In Proceedings of the IEEE International Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985; Volume 2, pp. 116–121. [Google Scholar]
- Wurm, K.M.; Hornung, A.; Bennewitz, M.; Stachniss, C.; Burgard, W. OctoMap: A probabilistic, flexible, and compact 3D map representation for robotic systems. In Proceedings of the ICRA Workshop on Best Practice in 3D Perception and Modeling for Mobile Manipulation, Anchorage, AK, USA, 3–7 May 2010. [Google Scholar]
- Thrun, S. Learning occupancy grid maps with forward sensor models. Auton. Robot. 2003, 15, 111–127. [Google Scholar] [CrossRef]
- O’Callaghan, S.; Ramos, F.; Durrant-Whyte, H. Contextual occupancy maps using Gaussian processes. In Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 1054–1060. [Google Scholar]
- O’Callaghan, S.; Ramos, F. Gaussian process occupancy maps. Int. J. Robot. Res. 2012, 31, 42–62. [Google Scholar] [CrossRef]
- Rasmussen, C.; Williams, C. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Tresp, V. Mixtures of Gaussian processes. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 28–30 November 2000; pp. 654–660. [Google Scholar]
- Ross, J.C.; Dy, J.G. Nonparametric Mixture of Gaussian Processes with Constraints. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1346–1354. [Google Scholar]
- Görür, D.; Rasmussen, C.E. Dirichlet process gaussian mixture models: Choice of the base distribution. J. Comput. Sci. Technol. 2010, 25, 653–664. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J. Towards large-scale occupancy map building using Dirichlet and Gaussian processes. In Proceedings of the 2011 Australasian Conference on Robotics and Automation (ACRA), Melbourne, Australia, 7–9 December 2011. [Google Scholar]
- Kim, S.; Kim, J. Building occupancy maps with a mixture of Gaussian processes. In Proceedings of the IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA, 14–18 May 2012; pp. 4756–4761. [Google Scholar]
- Viset, F.; Helmons, R.; Kok, M. An Extended Kalman Filter for Magnetic Field SLAM Using Gaussian Process Regression. Sensors 2022, 22, 2833. [Google Scholar] [CrossRef] [PubMed]
- Yin, A.; Zhou, J.; Liang, T. A Gaussian Process State Space Model Fusion Physical Model and Residual Analysis for Fatigue Evaluation. Sensors 2022, 22, 2540. [Google Scholar] [CrossRef] [PubMed]
- Corcione, E.; Pfezer, D.; Hentschel, M.; Giessen, H.; Tarín, C. Machine Learning Methods of Regression for Plasmonic Nanoantenna Glucose Sensing. Sensors 2022, 22, 7. [Google Scholar] [CrossRef] [PubMed]
- Dörr, M.; Ott, L.; Matthiesen, S.; Gwosch, T. Prediction of Tool Forces in Manual Grinding Using Consumer-Grade Sensors and Machine Learning. Sensors 2021, 21, 7147. [Google Scholar] [CrossRef] [PubMed]
- Lang, T.; Plagemann, C.; Burgard, W. Adaptive non-stationary kernel regression for terrain modeling. In Proceedings of the Robotics: Science and Systems, Atlanta, GA, USA, 27–30 July 2007. [Google Scholar]
- Hadsell, R.; Bagnell, J.; Huber, D.; Hebert, M. Space-carving kernels for accurate rough terrain estimation. Int. J. Robot. Res. 2010, 29, 981–996. [Google Scholar] [CrossRef]
- Gerardo-Castro, M.P.; Peynot, T.; Ramos, F. Laser-radar data fusion with gaussian process implicit surfaces. In Proceedings of the Field and Service Robotics, Toronto, ON, Canada, 24–26 June 2015; pp. 289–302. [Google Scholar]
- Smith, M.; Posner, I.; Newman, P. Generating implicit surfaces from lidar data. In Proceedings of the Towards Autonomous Robotic Systems, Plymouth, UK, 13 August–2 September 2010. [Google Scholar]
- O’Callaghan, S.; Ramos, F. Continuous occupancy mapping with integral kernels. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 7–11 August 2011; pp. 1494–1500. [Google Scholar]
- Jacobs, R.; Jordan, M.; Nowlan, S.; Hinton, G. Adaptive mixtures of local experts. Neural Comput. 1991, 3, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Siadat, A.; Kaske, A.; Klausmann, S.; Dufaut, M.; Husson, R. An Optimized Segmentation Method for a 2D Laser-Scanner Applied to Mobile Robot Navigation. In Proceedings of the 3rd IFAC Symposium on Intelligent Components and Instruments for Control Applications, Annecy, France, 9–11 June 1997; pp. 153–158. [Google Scholar]
- Nguyen, V.; Martinelli, A.; Tomatis, N.; Siegwart, R. A comparison of line extraction algorithms using 2D laser range finder for indoor mobile robotics. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 1 July 2005; pp. 1929–1934. [Google Scholar]
- Williams, C.K.I.; Barber, D. Bayesian Classification with Gaussian Processes. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1342–1351. [Google Scholar] [CrossRef] [Green Version]
- Minka, T.P. Expectation Propagation for Approximate Bayesian Inference. In Proceedings of the Conference on Uncertainty in Artificial Intelligence, Seattle, WA, USA, 2–5 August 2001; pp. 362–369. [Google Scholar]
- Platt, J.C. Probabilities for SV Machines. In Advances in Large Margin Classifiers; MIT Press: Cambridge, MA, USA, 2000; pp. 61–74. [Google Scholar]
- Williams, C.K.I.; Barber, D. Adaptive quadrature – revisited. Bit Numer. Math. 2000, 40, 84–101. [Google Scholar]
- Tresp, V. A Bayesian committee machine. Neural Comput. 2000, 12, 2719–2741. [Google Scholar] [CrossRef] [PubMed]
Gaussian Process | A Mixture of Gaussian Process Experts |
---|---|
Learning | Inference | Total | |
---|---|---|---|
OGM | – | 0.087 s | 0.087 s |
Single GP | 11.9 h | 103.0 s | 11.9 h |
Mixture of GPs with DP-clustering | 1.5 h | 17.2 s | 1.5 h |
Mixture of GPs with LT-clustering | 1.4 h | 11.6 s | 1.4 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Kim, J. Efficient Clustering for Continuous Occupancy Mapping Using a Mixture of Gaussian Processes. Sensors 2022, 22, 6832. https://doi.org/10.3390/s22186832
Kim S, Kim J. Efficient Clustering for Continuous Occupancy Mapping Using a Mixture of Gaussian Processes. Sensors. 2022; 22(18):6832. https://doi.org/10.3390/s22186832
Chicago/Turabian StyleKim, Soohwan, and Jonghyuk Kim. 2022. "Efficient Clustering for Continuous Occupancy Mapping Using a Mixture of Gaussian Processes" Sensors 22, no. 18: 6832. https://doi.org/10.3390/s22186832
APA StyleKim, S., & Kim, J. (2022). Efficient Clustering for Continuous Occupancy Mapping Using a Mixture of Gaussian Processes. Sensors, 22(18), 6832. https://doi.org/10.3390/s22186832