Wheel-Rail Contact-Induced Impact Vibration Analysis for Switch Rails Based on the VMD-SS Method
Abstract
:1. Introduction
2. Extracting and Analyzing Methods for Impact Vibration Signals
2.1. Impact Vibration Signal Extraction Method
2.2. Feature Analysis of Impact Vibration
2.3. Optimizing Sensor Arrangements
3. Experimental Study and Results
3.1. Experiment Scheme and System
3.2. Determining Passing Time and Correcting Velocity
3.3. Impact Vibration Extraction
4. Influences of Damage Dimensions and Velocities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Setshedi, I.I.; Loveday, P.W.; Long, C.S.; Wilke, D.N. Estimation of rail properties using semi-analytical finite element models and guided wave ultrasound measurements. Ultrasonics 2019, 96, 240–252. [Google Scholar] [CrossRef]
- Najeh, T.; Lundberg, J.; Kerrouche, A. Deep-Learning and Vibration-Based System for Wear Size Estimation of Railway Switches and Crossings. Sensors 2021, 21, 5217. [Google Scholar] [CrossRef] [PubMed]
- Pålsson, B.A.; Nielsen, J.C. Wheel–rail interaction and damage in switches and crossings. Veh. Syst. Dyn. 2012, 50, 43–58. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, X.; Sun, Y.; Ling, L.; Zhang, T.; Wang, K.; Zhai, W. Non-Hertzian contact analysis of heavy-haul locomotive wheel/rail dynamic interactions under changeable friction conditions. Veh. Syst. Dyn. 2021, 60, 2167–2189. [Google Scholar] [CrossRef]
- Jing, L.; Wang, K.; Zhai, W. Impact vibration behavior of railway vehicles: A state-of-the-art overview. Acta Mech. Sin. 2021, 37, 1193–1221. [Google Scholar] [CrossRef]
- Remennikov, A.; Kaewunruen, S. Experimental Investigation on Dynamic Railway Sleeper/Ballast Interaction. Exp. Mech. 2006, 46, 57–66. [Google Scholar] [CrossRef]
- Hory, C.; Bouillaut, L.; Aknin, P. Time–frequency characterization of rail corrugation under a combined auto-regressive and matched filter scheme. Mech. Syst. Signal Process. 2012, 29, 174–186. [Google Scholar] [CrossRef]
- Li, Y.; Hu, J.; Ma, B.; Liang, C. Development and verification of hydroelastic model experiment for the flow-induced vibration analysis of roller compacted concrete dam. J. Low Freq. Noise Vib. Act. Control 2021, 40, 1907–1926. [Google Scholar] [CrossRef]
- Goyal, D.; Pabla, B.S. The Vibration Monitoring Methods and Signal Processing Techniques for Structural Health Monitoring: A Review. Arch. Comput. Methods Eng. 2016, 23, 585–594. [Google Scholar] [CrossRef]
- Sánchez, R.-V.; Lucero, P.; Macancela, J.-C.; Rubio Alonso, H.; Cerrada, M.; Cabrera, D.; Castejón, C. Evaluation of Time and Frequency Condition Indicators from Vibration Signals for Crack Detection in Railway Axles. Appl. Sci. 2020, 10, 4367. [Google Scholar] [CrossRef]
- Chen, Z.; Zhai, W.; Wang, K. Vibration feature evolution of locomotive with tooth root crack propagation of gear transmission system. Mech. Syst. Signal Process. 2019, 115, 29–44. [Google Scholar] [CrossRef]
- Gao, X.; Feng, Q.; Wang, A.; Sheng, X.; Cheng, G. Testing research on frequency-dependent characteristics of dynamic stiffness and damping for high-speed railway fastener. Eng. Fail. Anal. 2021, 129, 105689. [Google Scholar] [CrossRef]
- Roveri, N.; Carcaterra, A. Damage detection in structures under traveling loads by Hilbert–Huang transform. Mech. Syst. Signal Process. 2012, 28, 128–144. [Google Scholar] [CrossRef]
- Cantero, D.; Basu, B. Railway infrastructure damage detection using wavelet transformed acceleration response of traversing vehicle. Struct. Control Health Monit. 2015, 22, 62–70. [Google Scholar] [CrossRef]
- Men, T.; Li, Y.-F.; Ji, Y.; Zhang, X.; Liu, P. Health assessment of high-speed train wheels based on group-profile data. Reliab. Eng. Syst. Saf. 2022, 223, 108496. [Google Scholar] [CrossRef]
- Mishra, S.; Sharan, P.; Saara, K. Real time implementation of fiber Bragg grating sensor in monitoring flat wheel detection for railways. Eng. Fail. Anal. 2022, 138, 106376. [Google Scholar] [CrossRef]
- Du, X.; Wang, F. Modal parameter identification under non-stationary ambient excitation based on continuous time AR model. Sci. China Technol. Sci. 2009, 52, 3180–3187. [Google Scholar] [CrossRef]
- Avci, O.; Abdeljaber, O.; Kiranyaz, S.; Hussein, M.; Gabbouj, M.; Inman, D.J. A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications. Mech. Syst. Signal Process. 2021, 147, 107077. [Google Scholar] [CrossRef]
- Hou, R.; Xia, Y. Review on the new development of vibration-based damage identification for civil engineering structures: 2010–2019. J. Sound Vib. 2021, 491, 115741. [Google Scholar] [CrossRef]
- Li, Z.; He, Y.; Shi, J.; Zhao, Y. Prediction Method of Track Irregularity Based on EMD. In Resilience and Sustainable Transportation Systems; American Society of Civil Engineers: Reston, VA, USA, 2020; pp. 582–591. [Google Scholar] [CrossRef]
- Wang, K.; Hao, Q.; Zhang, X.; Tang, Z.; Wang, Y.; Shen, Y. Blind source extraction of acoustic emission signals for rail cracks based on ensemble empirical mode decomposition and constrained independent component analysis. Measurement 2020, 157, 107653. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, W.; Zhang, Y.; Gao, Z.; Wang, X. Fault diagnosis of rotating machines for rail vehicles based on local mean decomposition—energy moment—directed acyclic graph support vector machine. Adv. Mech. Eng. 2016, 8, 1687814016629345. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Y.; Xu, M.; Huang, W. A Review of Early Fault Diagnosis Approaches and Their Applications in Rotating Machinery. Entropy 2019, 21, 409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, B.-K.; Li, J.; Xing, Z.-Y. Rail Corrugation Identification Method Based on Parameter optimization VMD and SPWVD. In Proceedings of the 16th International Conference on Networking, Sensing and Control (ICNSC), Banff, AB, Canada, 9–11 May 2019; pp. 110–115. [Google Scholar] [CrossRef]
- Chen, S.; Wang, K.; Chang, C.; Xie, B.; Zhai, W. A two-level adaptive chirp mode decomposition method for the railway wheel flat detection under variable-speed conditions. J. Sound Vib. 2021, 498, 115963. [Google Scholar] [CrossRef]
- Iglesias-Martínez, M.E.; de Córdoba, P.F.; Antonino-Daviu, J.A.; Conejero, J.A. Detection of nonadjacent rotor faults in induction motors via spectral subtraction and autocorrelation of stray flux signals. IEEE Trans. Ind. Appl. 2019, 55, 4585–4594. [Google Scholar] [CrossRef]
- Balaji, V.; Maheswaran, S.; Babu, M.R.; Kowsigan, M.; Prabhu, E.; Venkatachalam, K. Combining statistical models using modified spectral subtraction method for embedded system. Microprocess. Microsyst. 2020, 73, 102957. [Google Scholar] [CrossRef]
- Li, H.; Liu, T.; Wu, X.; Chen, Q. An optimized VMD method and its applications in bearing fault diagnosis. Measurement 2020, 166, 108185. [Google Scholar] [CrossRef]
- Aghazadeh, F.; Tahan, A.; Thomas, M. Tool condition monitoring using spectral subtraction and convolutional neural networks in milling process. Int. J. Adv. Manuf. Technol. 2018, 98, 3217–3227. [Google Scholar] [CrossRef]
- Dron, J.; Bolaers, F. Improvement of the sensitivity of the scalar indicators (crest factor, kurtosis) using a de-noising method by spectral subtraction: Application to the detection of defects in ball bearings. J. Sound Vib. 2004, 270, 61–73. [Google Scholar] [CrossRef]
- Hu, P.; Wang, H.; Tian, G.; Dong, Z.; Qiu, F.; Spencer, B.F. Wireless Localization of Spallings in Switch-Rails With Guided Waves Based on a Time–Frequency Method. IEEE Sens. J. 2019, 19, 11050–11062. [Google Scholar] [CrossRef]
- Xu, L.; Zhai, W. Stochastic analysis model for vehicle-track coupled systems subject to earthquakes and track random irregularities. J. Sound Vib. 2017, 407, 209–225. [Google Scholar] [CrossRef]
- Chang, C.; Ling, L.; Chen, S.; Zhai, W.; Wang, K.; Wang, G. Dynamic performance evaluation of an inspection wagon for urban railway tracks. Measurement 2020, 170, 108704. [Google Scholar] [CrossRef]
Young’s Modulus/GPA | Poisson’s Ratio | Density/kg/m3 |
---|---|---|
206 | 0.3 | 7850 |
Calculated value | 9.44 | 2.58 | 4.44 | 2.62 | 9.39 | 2.57 |
Actual value | 9.4 | 2.6 | 4.46 | 2.6 | 9.4 | 2.6 |
Error | 0.43% | 0.77% | 0.45% | 0.77% | 0.1% | 1.1% |
IMF Component Number | Central Frequency of Modal Component/Hz | ||||
---|---|---|---|---|---|
IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | |
2 | 33 | 1229 | |||
3 | 33 | 1229 | 2900 | ||
4 | 33 | 1229 | 2900 | 3655 | |
5 | 33 | 1229 | 2611 | 2900 | 3655 |
Preseted Velocity /km/h | Wave Crest | Measuring Point 1 | Measuring Point 2 | ||||
---|---|---|---|---|---|---|---|
I3 | I5 | I7 | I3 | I5 | I7 | ||
12 | Calculated value | 2.49 m | 2.62 m | 2.47 m | 2.55 m | 2.65 m | 2.48 m |
Error | 0.4% | 4.8% | 1.1% | 2% | 6% | 0.8% | |
14 | Calculated value | 2.53 m | 2.68 m | 2.5 m | 2.56 | 2.68 | 2.5 |
Error | 1.2% | 7.2% | 0% | 2.4% | 7.2% | 0% | |
16 | Calculated value | 2.55 | 2.69 | 2.52 | 2.49 | 2.64 | 2.49 |
Error | 2% | 7.6% | 0.8% | 0.4% | 5.6% | 0.4% | |
18 | Calculated value | 2.56 | 2.71 | 2.57 | 2.55 | 2.7 | 2.56 |
Error | 2.4% | 8.4% | 2.8% | 2% | 8% | 2.4% | |
20 | Calculated value | 2.58 | 2.7 | 2.56 | 2.55 | 2.65 | 2.53 |
Error | 3.2% | 8% | 2.4% | 2% | 6% | 1.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, P.; Wang, H.; Zhang, C.; Hua, L.; Tian, G. Wheel-Rail Contact-Induced Impact Vibration Analysis for Switch Rails Based on the VMD-SS Method. Sensors 2022, 22, 6872. https://doi.org/10.3390/s22186872
Hu P, Wang H, Zhang C, Hua L, Tian G. Wheel-Rail Contact-Induced Impact Vibration Analysis for Switch Rails Based on the VMD-SS Method. Sensors. 2022; 22(18):6872. https://doi.org/10.3390/s22186872
Chicago/Turabian StyleHu, Pan, Haitao Wang, Chunlin Zhang, Liang Hua, and Guiyun Tian. 2022. "Wheel-Rail Contact-Induced Impact Vibration Analysis for Switch Rails Based on the VMD-SS Method" Sensors 22, no. 18: 6872. https://doi.org/10.3390/s22186872
APA StyleHu, P., Wang, H., Zhang, C., Hua, L., & Tian, G. (2022). Wheel-Rail Contact-Induced Impact Vibration Analysis for Switch Rails Based on the VMD-SS Method. Sensors, 22(18), 6872. https://doi.org/10.3390/s22186872