5G/B5G mmWave Cellular Networks with MEC Prefetching Based on User Context Information †
Abstract
:1. Introduction
- MEC-assisted demand traffic prefetching is introduced to fully utilize the potential of mmWave communication under the constraint of limited backhaul.
- The proposed prefetching algorithm is based on the user context information, such as the users’ position information, preferences, and so on. Our algorithm assumes that it can predict their destination and demand traffic amount to be delivered to the nearest edge server in advance of their arrival.
- The validity of the proposed scheme is elucidated through a sophisticated computer simulation, which accurately modeled the user mobility and association/handover to macro/small cells.
2. System Model
2.1. mmWave Heterogeneous Network
2.2. User Distribution and Mobility
- i.
- The user selects one hotspot area randomly as a destination when entering the target macro cell.
- ii.
- The user moves to the destination and stays there for a certain time.
- iii.
- After staying, the user goes outside of the macro cell.
- iv.
- The user enters the macro cell as a new user, and then leaves the macro cell repeatedly until the end of the evaluation time.
2.3. Traffic Model
3. Prefetching Algorithm
3.1. Process for Data Prefetching
3.2. Objective Function Including User Context Parameters
4. Computer Simulation
4.1. Simulation Condition and Performance Metric
4.2. Numerical Analysis
4.3. Discussion and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
mmWave | Millimeter-wave |
5G | Fifth generation mobile communications system |
B5G | Beyond 5G |
NR-U | New radio-based access to unlicensed spectrum |
HetNet | Heterogeneous network |
BS | Base station |
UE | User equipment |
C-plane | Control plane |
U-plane | User plane |
MEC | multi-access edge computing |
C-RAN | Centralized radio access network |
3GPP | Third generation partnership project |
SINR | Signal-to-interference-plus-noise power ratio |
WPF | Weighted proportional fairness |
RR | Round robin |
References
- Cisco White Paper. Cisco Annual Internet Report, 2018–2023. Available online: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf (accessed on 20 August 2022).
- 3GPP TS 38.101-2 V17.4.0—NR; User Equipment (UE) Radio Transmission and Reception; Part 2: Range 2 Standalone (Release 17), 3GPP. 2021. Available online: https://www.3gpp.org/ftp//Specs/archive/38_series/38.101-2/38101-2-h00.zip (accessed on 20 August 2022).
- Kim, Y.; Kim, Y.; Oh, J.; Ji, H.; Yeo, J.; Choi, S.; Ryu, H.; Noh, H.; Kim, T.; Sun, F.; et al. New Radio (NR) and its Evolution toward 5G-Advanced. IEEE Wirel. Commun. 2019, 26, 2–7. [Google Scholar] [CrossRef]
- Patriciello, N.; Lagén, S.; Bojović, B.; Giupponi, L. NR-U and IEEE 802.11 Technologies Coexistence in Unlicensed mmWave Spectrum: Models and Evaluation. IEEE Access 2020, 8, 71254–71271. [Google Scholar] [CrossRef]
- Sakaguchi, K.; Tran, G.K.; Shimodaira, H.; Nanba, S.; Sakurai, T.; Takinami, K.; Siaud, I.; Strinati, E.C.; Capone, A.; Karls, I.; et al. Millimeter-Wave Evolution for 5G Cellular Networks. IEICE Trans. Commun. 2015, E98.B, 388–402. [Google Scholar] [CrossRef]
- Sakaguchi, K.; Haustein, T.; Barbarossa, S.; Strinati, E.C.; Clemente, A.; Destino, G.; Pärssinen, A.; Kim, I.; Chung, H.; Kim, J.; et al. Where, When, and How mmWave is Used in 5G and Beyond. IEICE Trans. Electron. 2017, E100.C, 790–808. [Google Scholar] [CrossRef]
- O’Dea, S. OECD: Share of Fibre Connections in Broadband 2020; OECD: Paris, Frace, 2021. [Google Scholar]
- Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A Survey on Mobile Edge Computing: The Communication Perspective. IEEE Commun. Surv. Tutorials 2017, 19, 2322–2358. [Google Scholar] [CrossRef]
- Porambage, P.; Okwuibe, J.; Liyanage, M.; Ylianttila, M.; Taleb, T. Survey on Multi-Access Edge Computing for Internet of Things Realization. IEEE Commun. Surv. Tutorials 2018, 20, 2961–2991. [Google Scholar] [CrossRef]
- Pham, Q.V.; Fang, F.; Ha, V.N.; Piran, M.J.; Le, M.; Le, L.B.; Hwang, W.J.; Ding, Z. A Survey of Multi-Access Edge Computing in 5G and Beyond: Fundamentals, Technology Integration, and State-of-the-Art. IEEE Access 2020, 8, 116974–117017. [Google Scholar] [CrossRef]
- Jiang, Z.; Kleinrock, L. Web prefetching in a mobile environment. IEEE Pers. Commun. 1998, 5, 25–34. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, J. Web prefetching using display-based prediction. In Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI 2003), Halifax, NS, Canada, 13–17 October 2003; pp. 486–489. [Google Scholar] [CrossRef]
- Deng, Y.; Manoharan, S. Review and analysis of web prefetching. In Proceedings of the 2015 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, BC, Canada, 24–26 August 2015; pp. 40–45. [Google Scholar] [CrossRef]
- Joo, M.; An, Y.; Roh, H.; Lee, W. Predictive Prefetching Based on User Interaction for Web Applications. IEEE Commun. Lett. 2021, 25, 821–824. [Google Scholar] [CrossRef]
- Shinkuma, R.; Okada, M.; Komaki, S. Adaptive Transmission Scheme for Web Prefetching in Wireless Environment. IEICE Trans. Electron. 2002, E85-C, 485–491. [Google Scholar]
- Nagase, F.; Hiraguri, T.; Nishimori, K.; Makino, H. Web Acceleration by Prefetching in Extremely Large Latency Network. Am. J. Oper. Res. 2012, 2, 339–347. [Google Scholar] [CrossRef]
- Mohammedameen, I.; Mkwawa, I.H.; Sun, L. Follow-me Prefetching for Video Streaming Over Mobile Edge Computing Networks. In Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, UK, 19–23 August 2019; pp. 1937–1942. [Google Scholar] [CrossRef]
- Li, Y.; Frangoudis, P.A.; Hadjadj-Aoul, Y.; Bertin, P. A Mobile Edge Computing-based architecture for improved adaptive HTTP video delivery. In Proceedings of the 2016 IEEE Conference on Standards for Communications and Networking (CSCN), Berlin, Germany, 31 October–2 November 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Behravesh, R.; Perez-Ramirez, D.F.; Rao, A.; Harutyunyan, D.; Riggio, R.; Steinert, R. ML-Driven DASH Content Pre-Fetching in MEC-Enabled Mobile Networks. In Proceedings of the 2020 16th International Conference on Network and Service Management (CNSM), Izmir, Turkey, 2–6 November 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Zhang, X.; Wang, W. Mobility-Aware Coded Probabilistic Caching Scheme for MEC-Enabled Small Cell Networks. IEEE Access 2017, 5, 17824–17833. [Google Scholar] [CrossRef]
- Martin-Vega, F.J.; Di Renzo, M.; Aguayo-Torres, M.C.; Gomez, G.; Duong, T.Q. Stochastic geometry modeling and analysis of backhaul-constrained Hyper-Dense Heterogeneous cellular networks. In Proceedings of the 2015 17th International Conference on Transparent Optical Networks (ICTON), Budapest, Hungary, 5–9 July 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Zhang, G.; Quek, T.Q.S.; Kountouris, M.; Huang, A.; Shan, H. Fundamentals of Heterogeneous Backhaul Design—-Analysis and Optimization. IEEE Trans. Commun. 2016, 64, 876–889. [Google Scholar] [CrossRef]
- Esquivel-Mendiola, E.A.; Galeana-Zapién, H.; Covarrubias, D.H.; Aldana-Bobadilla, E. Distributed Algorithm for Base Station Assignment in 4G/5G Machine-Type Communication Scenarios with Backhaul Limited Conditions. Sensors 2020, 20. [Google Scholar] [CrossRef] [PubMed]
- Saha, C.; Dhillon, H.S. Millimeter Wave Integrated Access and Backhaul in 5G: Performance Analysis and Design Insights. IEEE J. Sel. Areas Commun. 2019, 37, 2669–2684. [Google Scholar] [CrossRef] [Green Version]
- Jing, W.; Wen, X.; Lu, Z.; Zhang, H. Multi-Location-Aware Joint Optimization of Content Caching and Delivery for Backhaul-Constrained UDN. Sensors 2019, 19, 2449. [Google Scholar] [CrossRef]
- Oh, S.; Park, S.; Shin, Y.; Lee, E. Optimized Distributed Proactive Caching Based on Movement Probability of Vehicles in Content-Centric Vehicular Networks. Sensors 2022, 22, 3346. [Google Scholar] [CrossRef]
- Lentisco, C.M.; Bellido, L.; González-Sánchez, D.; Martínez-Casanueva, I.D.; Fernández, D.; Soto, I. Extending the MEC Mobility Service to Support Cache Prefetching. In Proceedings of the 2022 18th International Conference on the Design of Reliable Communication Networks (DRCN), Vilanova i la Geltrú, Spain, 28–31 March 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Nishiuchi, H.; Tran, G.K.; Sakaguchi, K. Performance Evaluation of 5G mmWave Edge Cloud with Prefetching Algorithm-Invited Paper. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Nakamura, M.; Nishiuchi, H.; Koslowski, K.; Daube, J.; Santos, R.; Tran, G.K.; Sakaguchi, K. Performance Evaluation of Prefetching Algorithm for Real-Time Edge Content Delivery in 5G System. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Nakamura, M.; Nishiuchi, H.; Nakazato, J.; Koslowski, K.; Daube, J.; Santos, R.; Tran, G.K.; Sakaguchi, K. Experimental Verification of SDN/NFV in Integrated mmWave Access and Mesh Backhaul Networks. IEICE Trans. Commun. 2021, E104.B, 217–228. [Google Scholar] [CrossRef]
- Nakazato, J.; Nakamura, M.; Tao, Y.; Tran, G.K.; Sakaguchi, K. Benefits of MEC in 5G Cellular Networks from Telecom Operator’s View Points. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Nakazato, J.; Nakamura, M.; Yu, T.; Li, Z.; Maruta, K.; Tran, G.K.; Sakaguchi, K. Market Analysis of MEC-Assisted Beyond 5G Ecosystem. IEEE Access 2021, 9, 53996–54008. [Google Scholar] [CrossRef]
- Pizzinat, A.; Chanclou, P.; Saliou, F.; Diallo, T. Things You Should Know About Fronthaul. J. Light. Technol. 2015, 33, 1077–1083. [Google Scholar] [CrossRef]
- IEEE 802.11ad. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band. 2012. Available online: https://ieeexplore.ieee.org/document/6392842 (accessed on 20 August 2022). [CrossRef]
- 3GPP, TS 36.814 (V9.0.0), 3GPP, 2010. Further Advancements for E-UTRA Physical Layer Aspects (Release 9). 2010. Available online: https://www.3gpp.org/ftp/Specs/archive/36_series/36.814/36814-900.zip (accessed on 20 August 2022).
- Alexander, M.; Ilya, B.; Artyom, L.; Andrey, P.; Karls, I.; Domenico, A.D.; Filippini, I.; Sakaguchi, K.; Tran, G.K.; Shimodaira, H.; et al. D4.5—Overall System Performance Evaluation Results. MiWEBA Deliverables. 2015. Available online: https://cordis.europa.eu/docs/projects/cnect/7/608637/080/deliverables/001-MiWEBAD45v32.pdf (accessed on 20 August 2022).
- Mohamed, E.M.; Sakaguchi, K.; Sampei, S. Delayed offloading using cloud cooperated millimeter wave gates. In Proceedings of the 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington, DC, USA, 2–5 September 2014; pp. 1852–1856. [Google Scholar] [CrossRef]
- 3GPP, TR 36.873 (V12.3.0), 3GPP. 2017. Study on 3D Channel Model for LTE. 2016. Available online: https://www.3gpp.org/ftp//Specs/archive/36_series/36.873/36873-c30.zip (accessed on 20 August 2022).
- Jaeckel, S.; Raschkowski, L.; Börner, K.; Thiele, L.; Burkhardt, F.; Eberlein, E. Quasi Deterministic Radio Channel Generator User Manual and Documentation; Fraunhofer Heinrich Hertz Institute: Berlin, Germany, 2016. [Google Scholar]
- Peter, M.; Sakaguchi, K.; Jaeckel, S.; Wu, S.; Nekovee, M.; Medbo, J.; Haneda, K.; Nguyen, S.; Naderpour, R.; Vehmas, J.; et al. D2.1–Measurement Campaigns and Initial Channel Models for Preferred Suitable Frequency Ranges. mmMAGIC Deliverables. 2016. Available online: https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5a7a6b182&appId=PPGMS (accessed on 20 August 2022).
- Shimodaira, H.; Tran, G.K.; Araki, K.; Nanba, S.; Hayashi, T.; Sakaguchi, K.; Konishi, S. Cell association method for multiband heterogeneous networks. In Proceedings of the 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington, DC, USA, 2–5 September 2014; pp. 2209–2213. [Google Scholar] [CrossRef]
- Akdeniz, M.R.; Liu, Y.; Samimi, M.K.; Sun, S.; Rangan, S.; Rappaport, T.S.; Erkip, E. Millimeter Wave Channel Modeling and Cellular Capacity Evaluation. IEEE J. Sel. Areas Commun. 2014, 32, 1164–1179. [Google Scholar] [CrossRef]
- Zhang, J.; Beletchi, A.; Yi, Y.; Zhuang, H. Capacity performance of millimeter wave heterogeneous networks at 28GHz/73GHz. In Proceedings of the 2014 IEEE Globecom Workshops (GC Wkshps), Austin, TX, USA, 8–12 December 2014; pp. 405–409. [Google Scholar] [CrossRef]
- Nakazato, J.; Kuchitsu, M.; Pawar, A.; Masuko, S.; Tokugawa, K.; Kubota, K.; Maruta, K.; Sakaguchi, K. Proof-of-Concept of Distributed Optimization of Micro-Services on Edge Computing for Beyond 5G. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference (VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–5. [Google Scholar]
- Nakazato, J.; Li, Z.; Maruta, K.; Kubota, K.; Yu, T.; Tran, G.K.; Sakaguchi, K.; Masuko, S. MEC/Cloud Orchestrator to Facilitate Private/Local Beyond 5G with MEC and Proof-of-Concept Implementation. Sensors 2022, 22, 5145. [Google Scholar] [CrossRef] [PubMed]
Year | Authors | Key Contribution |
---|---|---|
1998 | Jiang et al. [11] | Web content prefetching based on access probability |
2002 | Shinkuma et al. [15] | Adaptive modulation and coding for access probability-based web content prefetching |
2012 | Nagase et al. [16] | Web content prefetching and acceleration for extremely large latency network |
2016 | Zhang et al. [22] | Delay-based macro/small-cell association under limited backhaul |
2019 | Jing et al. [25] | Joint optimization of content prefetching in microwave-band ultra-dense small-cell network with limited backhaul |
2020 | Esquivel-Mendiola et al. [23] | 4G-based machine-type communication performance on limited backhaul |
2020 | Behravesh et al. [19] | DASH content prefetching by machine learning-aided prediction of user association and video segment |
2021 | Joo et al. [14] | Predictive web content prefetching utilizing user interaction |
2022 | Oh et al. [26] | Mobility-aware distributed proactive content prefetching strategy for vehicular network |
2022 | Maruta et al. (This Work) | MEC aided content prefetching to fully utilize mmWave Capacity with limited backhaul in macro/small-cell heterogeneous networks |
Parameters | Values |
---|---|
Macro cell radius | 250 m |
Hotspot area radius | 40 m |
User speed | 1 m/s |
Road interval | 25 m |
Staying time | Exponential distribution of avg. 500 s |
Parameters | Values |
---|---|
Traffic quantity | Gamma distribution shape parameter scale parameter |
Traffic bias | 4 kbits |
Occurrence interval | Exponential distribution of avg. 8 s |
Timeout | 60 s |
Parameters | Values |
---|---|
Bandwidth (Macro/Small) | 10 MHz/400 MHz/2.16 GHz |
Carrier freq. (Macro/Small) | 2.1 GHz/28 GHz/60 GHz |
Number of BS (Macro/Small) | 7 (1 for target)/84 (12 for target) |
Number of BS sectors (Macro/Small) | 3/3 |
BS antenna elements (Macro/Small) | 4/128 |
US antenna elements | 2 |
BS antenna height (Macro/Small) | 25 m/10 m/4 m |
UE antenna height | 1.5 m |
BS antenna beam pattern (Macro/Small) | 3GPP-LTE [38]/5G-NR/IEEE802.11ad |
UE antenna beam pattern | Half-wave dipole |
Channel model | QuaDRiGa [39] |
Tx power (Macro/Small) | 46 dBm/10 dBm |
LOS probability (Macro/Small) | [38]/[40] |
Path loss model (Macro/Small) | [38]/[40] |
Shadowing std. (Macro/Small) | [38]/[40] |
Backhaul capacity | 0 bps, 1 Mbps–30 Gbps |
Prefetching window | 0–100, 500 s |
PF coefficient | 3 |
Storage limitation | 0–10 GB, Infinity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maruta, K.; Nishiuchi, H.; Nakazato, J.; Tran, G.K.; Sakaguchi, K. 5G/B5G mmWave Cellular Networks with MEC Prefetching Based on User Context Information. Sensors 2022, 22, 6983. https://doi.org/10.3390/s22186983
Maruta K, Nishiuchi H, Nakazato J, Tran GK, Sakaguchi K. 5G/B5G mmWave Cellular Networks with MEC Prefetching Based on User Context Information. Sensors. 2022; 22(18):6983. https://doi.org/10.3390/s22186983
Chicago/Turabian StyleMaruta, Kazuki, Hiroaki Nishiuchi, Jin Nakazato, Gia Khanh Tran, and Kei Sakaguchi. 2022. "5G/B5G mmWave Cellular Networks with MEC Prefetching Based on User Context Information" Sensors 22, no. 18: 6983. https://doi.org/10.3390/s22186983
APA StyleMaruta, K., Nishiuchi, H., Nakazato, J., Tran, G. K., & Sakaguchi, K. (2022). 5G/B5G mmWave Cellular Networks with MEC Prefetching Based on User Context Information. Sensors, 22(18), 6983. https://doi.org/10.3390/s22186983