Real-Time Learning and Monitoring System in Fighting against SARS-CoV-2 in a Private Indoor Environment
Abstract
:1. Introduction
2. Background Research
3. Materials and Methods
3.1. Features of the Microgrids: Microcontrollers with Sensors and IoT Devices
3.2. Spatial Design Concerns of the Experiment Room
3.3. Communication Organization of the Microgrids for the IoT Data
3.4. Applying the Learning Models on the IoT Data
3.5. The Real-Time Learning and Monitoring System
4. Experiments and Results
4.1. Initial Calculations on the IoT Data from Microgrids
4.2. Experiments on Machine Learning Models
4.2.1. Classification Learning
4.2.2. Regression Learning
4.2.3. ECOC Classification Models with Different Learner Types
4.3. Preparation of the Dataset with Classified User Activities
4.4. Experiments on Deep Neural Networks
4.4.1. Pretraining Deep Neural Networks
4.4.2. Error Regularization and Data Optimization
Algorithm 1 Pseudo-code for error regularization and data optimization |
[YPred, score] = classify(DeepNNx, ValidationX) [Index, val] = find(YPred ~= ValidationY) for n = [index] if max(score(n) < 0.5) ValidationX(n) = []; ValidationY(n) = []; elseif max(score(n) > 0.5) ValXSwap(n) = ValidationX(n); for val(n)~=ValidationY(n) find(TrainingX(n)==ValidationY(n)) end TraXSwap(n) = TrainingX(n); ValidationX(n) = TraXSwap(n); TrainingX(n) = ValXSwap(n); else …, fitcknn(ValidationX(n), ValidationY(n), …), … end end |
4.5. Experimental Analyses and Outcomes of the Real-Time Learning and Monitoring System
5. Discussion and Future Directions
- The developed real-time learning system is practical and affordable because of the low-cost microgrids with sensors and IoT devices
- The acquired inputs from different sensors via the IoT cloud are recorded as lightweight data for monitoring and healthcare, and the learning system is lightweight, fast, and efficient in monitoring, processing, and predicting activities
- The system can be developed for multiple nodes of larger networks and services such as smart health and e-health systems (Figure 12).
6. Conclusions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Acc. | Accuracy |
AI | Artificial Intelligence |
Btc.N. | Batch Normalization |
Bi-LSTM | Binary Layered Long-Short Term Memory |
CNN | Convolutional Neural Networks |
ECOC | Error-Correcting Output Codes |
ELM | Extreme Learning Machine |
GPR | Gaussian Process Regression |
GPS | Global Positioning System |
HTML | Hyper-Text Markup Language |
IoT | Internet of Things |
Iter. | Iteration |
KNN | K-means Clustering for the Nearest Neighbor |
LAN | Local Area Network |
LCD | Liquid Crystal Display |
LED | Light Emitting Diode |
LSTM | Long-short Term Memory |
ML | Machine Learning |
Num. | Number |
PCA | Principal Component Analysis |
RLS | Real-Time Learning System |
RMSE | Root-Mean-Squared-Error |
Seq. | Sequence |
SSID | Service Set Identifier |
STA | Stationary Point |
SVM | Support Vector Machine |
Temp. | Temperature |
Valid. | Validation |
WAN | Wide Area Network |
References
- World Health Organization: WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19. Available online: https://www.who.int/dg/speeches/detail/who-director-general-sopening-remarks-at-the-media-briefing-on-covid-19-15-june-2020 (accessed on 23 January 2022).
- Tuli, S.; Tuli, S.; Tuli, R.; Singh Gill, S. Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing. Internet Things 2020, 11, 100222. [Google Scholar] [CrossRef]
- Rohila, V.S.; Gupta, N.; Kaul, A.; Sharm, D.K. Deep learning assisted COVID-19 detection using full CT-scans. Internet Things 2021, 14, 100377. [Google Scholar] [CrossRef]
- Paganelli, A.I.; Velmovitsky, P.E.; Miranda, P.; Branco, A.; Alencar, P.; Cowan, D.; Endler, M.; Morita, P.P. A conceptual IoT-based early-warning architecture for remote monitoring of COVID-19 patients in wards and at home. Internet Things 2021, 14, 100399. [Google Scholar] [CrossRef]
- D’Aeth, J.C.; Ghosal, S.; Grimm, F.; Haw, D.; Koca, E.; Lau, K.; Moret, S.; Rizmie, D.; Deeny, S.R.; Perez-Guzman, P.N.; et al. Optimal national prioritization policies for hospital care during the SARS-CoV pandemic. Nat. Comput. Sci. 2021, 1, 521–531. [Google Scholar] [CrossRef]
- Pham, M.; Mengistu, Y.; Do, H.; Sheng, W. Delivering home healthcare through a cloud-based smart home environment (CoSHE). Future Gener. Comput. Syst. 2018, 81, 129–140. [Google Scholar] [CrossRef]
- Hassanien, A.E.; Dey, N.; Borra, S. Medical Big Data and Internet of Medical Things; Taylor & Francis: Boca Raton, IL, USA, 2019. [Google Scholar]
- Erişen, S. Incremental transformation of spatial intelligence from smart systems to sensorial infrastructures. Build. Res. Inf. 2021, 49, 113–126. [Google Scholar] [CrossRef]
- HES. Available online: https://hayatevesigar.saglik.gov.tr/index-eng.html (accessed on 7 January 2022).
- Sokullu, R.; Akkas, M.A.; Demir, E. IoT supported smart home for the elderly. Internet Things 2020, 11, 100239. [Google Scholar] [CrossRef]
- Akkas, M.A.; Sokullu, R.; Ertürk Çetin, H. Healthcare and patient monitoring using IoT. Internet Things 2020, 11, 100173. [Google Scholar] [CrossRef]
- Habibzadeh, H.; Dinesh, K.; Shishvan, O.R.; Boggio-Dandry, A.; Sharma, G.; Soyata, T. A survey of healthcare Internet of Things (HIoT): A clinical perspective. IEEE Internet Things J. 2019, 7, 53–71. [Google Scholar] [CrossRef]
- Mackay, L.; Hailu, T.G.; Mouli, G.C.; Ramìrez-Elizondo, L.; Ferreira, J.A.; Bauer, P. From DC Nano- and Microgrids Towards the Universal DC Distribution System—A Plea to Think Further into the Future. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Mackay, L.; Hailu, T.G.; Ramìrez-Elizondo, L.; Ferreira, J.A.; Bauer, P. Towards a DC distribution system—Opportunities and challenges. In Proceedings of the 2015 IEEE First International Conference on DC Microgrids (ICDCM), Atlanta, GA, USA, 7–10 June 2015; pp. 215–220. [Google Scholar] [CrossRef]
- Li, C.; Dragicevic, T.; Aldana NL, D.; Hernández AC, L.; Guan, Y.; Rasmussen, T.B.; Beheshtaein, S. Grid Architecture for Future Distribution System—A Cyber-Physical System Perspective. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 5235–5239. [Google Scholar] [CrossRef]
- Haghi, M.; Neubert, S.; Geissler, A.; Fleischer, H.; Stoll, N.; Stoll, R.; Thurow, K. A flexible and pervasive IoT-based healthcare platform for physiological and environmental parameters monitoring. IEEE Internet Things J. 2020, 7, 5628–5647. [Google Scholar] [CrossRef]
- Deen, M.J. Information and communications technologies for elderly ubiquitous healthcare in a smart home. Pers. Ubiquitous Comput. 2015, 19, 573–599. [Google Scholar] [CrossRef]
- Chen, M.; Li, Y.; Luo, X.; Wang, W.; Wang, L.; Zhao, W. A novel human activity recognition scheme for smart health using multilayer extreme learning machine. IEEE Internet Things J. 2019, 6, 1410–1418. [Google Scholar] [CrossRef]
- Jaiswal, R.; Agarwal, A.; Negi, R. Smart solution for reducing the COVID-19 risk using smart city technology. IET Smart Cities 2020, 2, 82–88. [Google Scholar] [CrossRef]
- Brookfield, K.; Fitzsimons, C.; Scott, I.; Mead, G.; Starr, J.; Thin, N.; Tinker, A.; Ward Thompson, C. The home as enabler of more active lifestyles among older people. Build. Res. Inf. 2015, 43, 616–630. [Google Scholar] [CrossRef]
- Tan, L.; Yu, K.; Bashir, A.K.; Cheng, X.; Ming, F.; Zhao, L.; Zhou, X. Toward real-time and efficient cardiovascular monitoring for COVID-19 patients by 5G-enabled wearable medical devices: A deep learning approach. Neural Comput. Appl. 2021, 1–14. [Google Scholar] [CrossRef]
- Wang, J.; Spicher, N.; Haghi, M.; Warnecke, J.M.; Schwartze, J.; Deserno, T.M. Unobtrusive Health Monitoring in Private Spaces: The Smart Home. Sensors 2021, 21, 864. [Google Scholar] [CrossRef]
- Shang, C.; Chang, C.-Y.; Liu, J.; Zhao, S.; Roy, D.S. FIID: Feature-based implicit irregularity detection using unsupervised learning from IoT data for homecare of elderly. IEEE Internet Things J. 2020, 7, 10884–10896. [Google Scholar] [CrossRef]
- Tsiatsis, V.; Karnouskos, S.; Höller, J.; Boyle, D.; Mulligan, C. Internet of Things: Technologies and Applications for a New Age of Intelligence; Elsevier: London, UK, 2019. [Google Scholar]
- Yang, B.; Cheng, X.; Dai, D.; Olofsson, T.; Li, H.; Meier, A. Real-time and contactless measurements of thermal discomfort based on human poses for energy efficient control of buildings. Build. Environ. 2019, 162, 106284. [Google Scholar] [CrossRef]
- Taylor, W.; Shah, S.A.; Dashtipour, K.; Zahid, A.; Abbasi, Q.H.; Imran, M.A. An Intelligent Non-Invasive Real-Time Human Activity Recognition System for Next-Generation Healthcare. Sensors 2020, 20, 2653. [Google Scholar] [CrossRef]
- Shao, W.; Luo, H.; Zhao, F.; Tian, H.; Yan, S.; Crivello, A. Accurate indoor positioning using temporal–spatial constraints based on Wi-Fi fine time measurements. IEEE Internet Things J. 2020, 7, 11006–11019. [Google Scholar] [CrossRef]
- Bermudez-Edo, M.; Barnaghi, P.; Moessner, K. Analysing real world data streams with spatio-temporal correlations: Entropy vs. Pearson correlation. Autom. Constr. 2018, 88, 87–100. [Google Scholar] [CrossRef]
- Choi, J.-H.; Yang, B.; Yu, C.W. Artificial intelligence as an agent to transform research paradigms in building science and technology. Indoor Built Environ. 2021, 30, 1017–1020. [Google Scholar] [CrossRef]
- Kim, W.; Kim, Y.; Cha, S.H.; Fischer, M. Automated updating of space design requirements connecting user activities and space types. Autom. Constr. 2015, 50, 102–110. [Google Scholar] [CrossRef]
- Ye, Z.; Yan, G.; Wei, Y.; Zhou, B.; Li, N.; Shen, S.; Wang, L. Real-Time and Efficient Traffic Information Acquisition via Pavement Vibration IoT Monitoring System. Sensors 2021, 21, 2679. [Google Scholar] [CrossRef]
- Zhou, X.; Liang, W.; Kevin, I.; Wang, K.; Wang, H.; Yang, L.T.; Jin, Q. Deep-learning-enhanced human activity recognition for Internet of healthcare things. IEEE Internet Things J. 2020, 7, 6429–6438. [Google Scholar] [CrossRef]
- Wu, D.; Jiang, Z.; Xie, X.; Wei, X.; Yu, W.; Li, R. LSTM learning with Bayesian and Gaussian processing for anomaly detection in industrial IoT. IEEE Trans. Industr. Inform. 2020, 16, 5244–5253. [Google Scholar] [CrossRef]
- Ahmed, N.; Michelin, R.A.; Xue, W.; Ruj, S.; Malaney, R.; Kanhere, S.S.; Seneviratne, A.; Hu, W.; Janicke, H.; Jha, S.K. A survey of COVID-19 contact tracing apps. IEEE Access 2020, 8, 134577–134601. [Google Scholar] [CrossRef]
- Mauri, A.; Khemmar, R.; Decoux, B.; Ragot, N.; Rossi, R.; Trabelsi, R.; Boutteau, R.; Ertaud, J.; Savatier, X. Deep Learning for Real-Time 3D Multi-Object Detection, Localisation, and Tracking: Application to Smart Mobility. Sensors 2020, 20, 532. [Google Scholar] [CrossRef]
- Jahren, S.E.; Aakvaag, N.; Strisland, F.; Vogl, A.; Liberale, A.; Liverud, A.E. Towards Human Motion Tracking Enhanced by Semi-Continuous Ultrasonic Time-of-Flight Measurements. Sensors 2021, 21, 2259. [Google Scholar] [CrossRef]
- Perez, A.O.; Bierer, B.; Scholz, L.; Wöllenstein, J.; Palzer, S. A Wireless Gas Sensor Network to Monitor Indoor Environmental Quality in Schools. Sensors 2018, 18, 4345. [Google Scholar] [CrossRef]
- Li, Y.; Qian, H.; Hang, J.; Chen, X.; Hong, L.; Liang, P.; Li, J.; Xiao, S.; Wei, J.; Liu, L.; et al. Probable airborne transmission of SARS-CoV-2 in a poorly ventilated restaurant. Build. Environ. 2021, 196, 1–13. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Y.; Zhou, H.; Lin, J.; Zheng, Z.; Xu, H.; Lin, B.; Lin, M.; Liu, L. Affordable measures to monitor and alarm nosocomial SARS-CoV-2 infection due to poor ventilation. Indoor Air 2021, 31, 1833–1842. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Miao, T.; Liu, L.; Zheng, X.; Luo, D.; Li, Y. Indoor transmission of SARS-CoV-2. Indoor Air 2020, 31, 639–645. [Google Scholar] [CrossRef]
- Loconsole, D.; Centrone, F.; Morcavallo, C.; Campanella, S.; Sallustio, A.; Quarto, M.; Procacci, V.; Chironna, M. The Light and Shadow of Rapid Serological Tests for SARS-CoV-2 Infection: Results from a Study in a Large Emergency Department. Int. J. Environ. Res. Public Health 2020, 17, 6493. [Google Scholar] [CrossRef] [PubMed]
- Dierks, S.; Bader, O.; Schwanbeck, J.; Groß, U.; Weig, M.S.; Mese, K.; Lugert, R.; Bohne, W.; Hahn, A.; Feltgen, N.; et al. Diagnosing SARS-CoV-2 with Antigen Testing, Transcription-Mediated Amplification and Real-Time PCR. J. Clin. Med. 2021, 10, 2404. [Google Scholar] [CrossRef] [PubMed]
- Bock, S.; Hoffmann, B.; Beer, M.; Wernike, K. Saving Resources: SARS-CoV-2 Diagnostics by Real-Time RT-PCR Using Reduced Reaction Volumes. Diseases 2021, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- Avgeris, M.; Adamopoulos, P.G.; Galani, A.; Xagorari, M.; Gourgiotis, D.; Trougakos, I.P.; Voulgaris, N.; Dimopoulos, M.-A.; Thomaidis, N.S.; Scorilas, A. Novel Nested-Seq Approach for SARS-CoV-2 Real-Time Epidemiology and In-Depth Mutational Profiling in Wastewater. Int. J. Mol. Sci. 2021, 22, 8498. [Google Scholar] [CrossRef] [PubMed]
- Banko, A.; Petrovic, G.; Miljanovic, D.; Loncar, A.; Vukcevic, M.; Despot, D.; Cirkovic, A. Comparison and Sensitivity Evaluation of Three Different Commercial Real-Time Quantitative PCR Kits for SARS-CoV-2 Detection. Viruses 2021, 13, 1321. [Google Scholar] [CrossRef]
- Lunardi, G.M.; Machot, F.A.; Shekhovtsov, V.A.; Maran, V.; Machado, G.M.; Machado, A.; Mayr, H.C.; De Oliveira, J.P.M. IoT-based human action prediction and support. Internet Things 2018, 3–4, 52–68. [Google Scholar] [CrossRef]
- Jaimini, U.; Banerjee, T.; Romine, W.; Thirunarayan, K.; Sheth, A.; Kalra, M. Investigation of an indoor air quality sensor for asthma management in children. IEEE Sens. Lett. 2017, 1, 6000204. [Google Scholar] [CrossRef]
- Kou, L.; Zhang, D.; Liu, D. A Novel Medical E-Nose Signal Analysis System. Sensors 2017, 17, 402. [Google Scholar] [CrossRef]
- Wu, T.; Wu, F.; Qiu, C.; Redouté, J.-M.; Yuce, M.R. A Rigid-Flex Wearable Health Monitoring Sensor Patch for IoT-Connected Healthcare Applications. IEEE Internet Things J. 2020, 7, 6932–6945. [Google Scholar] [CrossRef]
- Siddiqi, M.; Ali, S.T.; Sivaraman, V. Forensic Verification of Health Data from Wearable Devices Using Anonymous Witnesses. IEEE Internet Things J. 2020, 7, 10745–10762. [Google Scholar] [CrossRef]
- Mohanta, B.K.; Jena, D.; Satapathy, U.; Patnaik, S. Survey on IoT security: Challenges and solution using machine learning, artificial intelligence and blockchain technology. Internet Things 2020, 11, 1–17. [Google Scholar] [CrossRef]
- Yan, K. Chiller fault detection and diagnosis with anomaly detective generative adversarial network. Build. Environ. 2021, 201, 1–9. [Google Scholar] [CrossRef]
- Jin, N.; Wu, J.; Ma, X.; Yan, K.; Mo, Y. Multi-Task Learning Model Based on Multi-Scale CNN and LSTM for Sentiment Classification. IEEE Access 2020, 8, 77060–77072. [Google Scholar] [CrossRef]
- Ergen, T.; Mirza, A.H.; Kozat, S.S. Energy-efficient LSTM networks for online learning. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 3114–3126. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Guo, S.; Piuri, V.; Choo, K.-K.R.; Raman, B. Special Issue on Edge-Cloud Interplay Based on SDN and NFV for Next-Generation IoT Applications. IEEE Internet Things J. 2020, 7, 5690–5694. [Google Scholar] [CrossRef]
- Liang, T.; Zeng, B.; Liu, J.; Ye, L.; Zou, C. An unsupervised user behavior prediction algorithm based on machine learning and neural network for smart home. IEEE Access 2018, 6, 49237–49247. [Google Scholar] [CrossRef]
- Weixian, L.; Logenthiran, T.; Van-Tung, P.; Woo, W.L. Implemented IoT-based self-learning home management system (SHMS) for Singapore. IEEE Internet Things J. 2018, 5, 2212–2219. [Google Scholar] [CrossRef]
- El Zouka, H.A.; Hosni, M.M. Secure IoT communications for smart healthcare monitoring system. Internet Things 2021, 13, 1–14. [Google Scholar] [CrossRef]
- Jolfaei, A.; Ostovari, P.; Alazab, M.; Gondal, I.; Kant, K. Special Issue on Privacy and Security in Distributed Edge Computing and Evolving IoT. IEEE Internet Things J. 2020, 7, 2496–2500. [Google Scholar] [CrossRef]
- Sinnapolu, G.; Alawneh, S. Integrating wearables with cloud-based communication for health monitoring and emergency assistance. Internet Things 2018, 1–2, 40–54. [Google Scholar] [CrossRef]
- ThingSpeak, IoT Channel for Real Time Learning & Monitoring. Available online: https://thingspeak.com/channels/1229234 (accessed on 31 July 2022).
- Hung, L.-P.; Huang, W.; Shih, H.-W.; Liu, C.-L. A Novel IoT Based Positioning and Shadowing System for Dementia Training. Int. J. Environ. Res. Public Health 2021, 18, 1610. [Google Scholar] [CrossRef]
- MathWorks, Fitcecoc. Available online: https://www.mathworks.com/help/stats/fitcecoc.html (accessed on 23 December 2020).
- Google Fit. Available online: https://google.com/fit/ (accessed on 9 February 2022).
- E-nabız. Available online: https://enabiz.gov.tr (accessed on 10 February 2022).
- Martín-Garín, A.; Millán-García, J.; Baïri, A.; Millán-Medel, J.; Sala-Lizarraga, J. Environmental monitoring system based on an Open Source Platform and the Internet of Things for a building energy retrofit. Autom. Constr. 2018, 87, 201–214. [Google Scholar] [CrossRef]
- Liang, B.; Liu, W.; Sun, L.; He, Z.; Hou, B. Economic MPC-based smart home scheduling with comprehensive load types, real-time tariffs, and intermittent DERs. IEEE Access 2020, 8, 194373–194383. [Google Scholar] [CrossRef]
- Han, T.; Muhammad, K.; Hussain, T.; Lloret, J.; Baik, S.W. An efficient deep learning framework for intelligent energy management in IoT networks. IEEE Internet Things J. 2021, 8, 3170–3179. [Google Scholar] [CrossRef]
- Mathworks, RCNN Object Detector. Available online: https://www.mathworks.com/help/vision/ref/rcnnobjectdetector.html?s_tid=doc_ta (accessed on 20 February 2022).
- Chen, X.; Girshick, R.; He, K.; Dollàr, P. TensorMask: A Foundation for Dense Object Segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 2061–2069. [Google Scholar]
Sensors | Microgrid X | Microgrid Y | Microgrid Z | ESP32 | Raspberry Pi 4 |
---|---|---|---|---|---|
Temperature & Humidity | - | DHT 11 | - | - | - |
Bluetooth | - | - | HC-06 | Built-in | Built-in |
Camera | - | - | - | - | Camera V2 |
Display | - | Liquid Crystal Display (LCD) | - | - | - |
Gas Sensor | MQ-2 | - | - | - | - |
Light | Light Emitting Diode (LED) | - | - | - | - |
Motion Tracking | HC-SR04 | HC-SR04 | - | - | - |
Remote Control | Applied | - | - | - | - |
Smart Card | - | - | - | - | - |
Sound | - | - | Controlled by mobile applications | - | - |
Wireless Connection | ESP8266 | ESP8266 | ESP8266 | Built-in | Built-in |
Wearable Devices | - | - | - | - | - |
Value | Explanation |
---|---|
1 | “I need help!” |
2 | “I do not feel good” |
3 | “It is alright!” |
4 | “I feel good” |
5 | “I feel great!” |
888 | Not activated |
Regression Model | RMSE | |
---|---|---|
Linear regression | Linear regression | 0.88 |
Interactions linear | 0.88 | |
Robust linear | 0.89 | |
Stepwise linear | 0.88 | |
Tree | Fine tree | 0.43 |
Medium tree | 0.57 | |
Coarse | 0.79 | |
SVM | Linear SVM | 0.91 |
Quadratic SVM | 12.1 | |
Cubic SVM | 955.97 | |
Fine Gaussian SVM | 0.7 | |
Medium Gaussian SVM | 0.8 | |
Coarse Gaussian SVM | 0.87 | |
Ensemble | Boosted trees | 2.31 |
Bagged trees | 0.46 | |
GPR | Squared exponential GPR | 0.63 |
Matern 5/2 GPR | 0.63 | |
Exponential GPR | 0.39 | |
Rational quadratic GPR | 0.63 |
Classification Model | Two Variables of 1012-by-4 Inputs | 1012-by-2 Inputs (without Angles) | |
---|---|---|---|
Accuracy | Accuracy | ||
Free | Fine tree | 93.6 | 96 |
Medium tree | 89 | 91 | |
Coarse | 78.1 | 74.6 | |
Discriminant | Linear discriminant | 43.9 | 43.2 |
Quadratic discriminant | 92.5 | 96 | |
Naïve Bayes | Gaussian | 75.5 | 80.4 |
Kernel | 78.8 | 81.9 | |
SVM | Linear SVM | 76.3 | 79.2 |
Quadratic SVM | 94.8 | 97.3 | |
Cubic SVM | 87.7 | 97.5 | |
Fine Gaussian SVM | 95.3 | 98.6 | |
Medium Gaussian SVM | 88.8 | 95.4 | |
Coarse Gaussian SVM | 63.8 | 75.8 | |
K-nearest neighbor | Fine | 94.8 | 98.4 |
Medium | 92.9 | 95.8 | |
Coarse | 70.8 | 72.9 | |
Cosine | 82.4 | 82.7 | |
Cubic | 92.7 | 95.3 | |
Weighted | 95.8 | 98.3 | |
Ensemble | Boosted trees | 93.4 | 96.2 |
Bagged trees | 95 | 97.4 | |
Subspace KNN | 74.6 | 76 | |
RUSBoosted trees | 89 | 91.3 |
Regression Models | RMSE Values | ||||||||
---|---|---|---|---|---|---|---|---|---|
Case 1 | Case 2 | Case 3 | Case 4 (Anomalies) | ||||||
X * | Y ** | X * | Y ** | X * | Y ** | X * | Y ** | ||
Linear regression | Linear regression | 0.98 | 0.9 | 0.43 | 0.42 | 1.6 | 1.26 | 41.54 | 31.74 |
Interactions linear | 0.98 | 0.9 | 0.44 | 0.42 | 1.2 | 0.57 | 38.79 | 30.26 | |
Robust linear | 0.98 | 0.9 | 0.53 | 0.5 | 1.6 | 1.26 | 41.64 | 31.85 | |
Stepwise linear | 0.98 | 0.9 | 0.43 | 0.42 | 1.2 | 0.58 | 38.79 | 30.26 | |
Tree | Fine tree | 1.45 | 1.11 | 1.27 | 1.38 | 4.76 | 4.07 | 20.79 | 18.8 |
Medium tree | 2.3 | 2.18 | 2.06 | 2.08 | 5.41 | 6.26 | 29.55 | 22.1 | |
Coarse | 4.96 | 4.67 | 3.97 | 3.77 | 6.21 | 7.93 | 32.72 | 26.27 | |
SVM | Linear SVM | 2.22 | 2.05 | 0.9 | 0.95 | 1.76 | 1.31 | 46.9 | 33.4 |
Quadratic SVM | 1.83 | 1.88 | 1.08 | 1.17 | 1.82 | 1.21 | 112.51 | 28.95 | |
Cubic SVM | 5.65 | 1.86 | 1.28 | 1.21 | 2.3 | 2.05 | 1665.6 | 131.81 | |
Fine Gaussian SVM | 2.23 | 2.57 | 2.96 | 2.6 | 5.83 | 4.81 | 32.49 | 27.98 | |
Medium Gaussian SVM | 1.98 | 1.75 | 1.39 | 1.3 | 2.82 | 2.34 | 40.77 | 27.98 | |
Coarse Gaussian SVM | 2.12 | 1.73 | 1.03 | 0.97 | 2.42 | 1.36 | 40.85 | 32.5 | |
Ensemble | Boosted trees | 5.01 | 4.58 | 4.54 | 4.37 | 6.01 | 4.59 | 22.01 | 20.88 |
Bagged trees | 15.79 | 1.17 | 2.99 | 8.81 | 6.44 | 4.8 | 36.81 | 28.77 | |
GPR | Squared exponential GPR | 0.96 | 0.89 | 0.21 | 0.19 | 0.47 | 0.33 | 18.05 | 19.37 |
Matérn 5/2 GPR | 0.97 | 0.88 | 0.21 | 0.19 | 0.48 | 0.33 | 17.69 | 18.04 | |
Exponential GPR | 1 | 0.81 | 0.37 | 0.34 | 1.3 | 0.84 | 16.74 | 16.05 | |
Rational Quadratic GPR | 0.94 | 0.89 | 0.21 | 0.19 | 0.47 | 0.33 | 16.81 | 15.96 |
ECOC Models Learner Type, Hyperparameter, Range | Validation Accuracy | Cross-Validation and Prediction Accuracy | ||||
---|---|---|---|---|---|---|
1012-by-2 Inputs | 1012-by-4 Inputs | 1012-by-2 Inputs | 1012-by-4 Inputs | |||
Cross-Validation | Test | Cross-Validation | Test | |||
Surrogate tree & gentle boost ensemble * | 83.1 | 99.1 | 83.7 | 76.14 | 99.1 | 95.1 |
SVM, Kernel, Gaussian | 86 | 98.4 | 81.8 | 75.49 | 98.9 | 92.48 |
KNN, Distance, Cosine | 96 | 99.8 | 98.5 | 94.12 | 99.9 | 96.08 |
KNN, Distance, Euclidean | 98.1 | 98.3 | 97.6 | 92.81 | 99.8 | 96.08 |
KNN, Distance weighted, Equal | 98.3 | 99.7 | 97.6 | 92.81 | 99.8 | 96.08 |
KNN, Distance weighted, Inverse | 98.3 | 99.7 | 97.6 | 92.81 | 99.8 | 96.08 |
KNN, Distance weighted, Squared Inverse | 98.3 | 99.7 | 97.6 | 92.81 | 99.8 | 96.08 |
KNN, Standardize | 98.2 | 98.5 | 97.3 | 92.48 | 100 | 93.13 |
n-by-6 Inputs | Classification Labels | Recorded & Classified Activity | ||||||
---|---|---|---|---|---|---|---|---|
n-by-2 Inputs (Motion Tracking Data) & CASES | Temp. (°C) | Humidity (%) | Gas Sensor Value | User-Rated Health State | ||||
CASE | D1 (cm) | D2 (cm) | ||||||
3 | 66.27 | 84 | 25.9 | 50 | 566 | 888 | 11 | Caretaker occupies |
1 | 87.3 | 95 | 26.1 | 49 | 539 | 888 | ||
2 | 76.59 | 78 | 25.4 | 36 | 481 | 888 | 12 | Ventilation |
2 | 77.5 | 79 | 25.4 | 35 | 472 | 888 | ||
2 | 77.02 | 81 | 25.2 | 33 | 472 | 888 | 13 | Cold-dry indoor air |
2 | 76.26 | 81 | 25.3 | 33 | 467 | 888 | ||
3 | 78.31 | 88 | 26.1 | 49 | 533 | 888 | 14 | Hot-humid indoor air |
3 | 78.63 | 87 | 26.1 | 49 | 536 | 888 | ||
3 | 88.8 | 124 | 26 | 50 | 542 | 5 | 15 | Empty/(Going) Out |
3 | 86.25 | 131 | 26 | 50 | 546 | 5 | ||
3 | 98.43 | 134 | 26 | 48 | 541 | 888 | 16 | (Entering) In |
1 | 107.19 | 123 | 26 | 48 | 540 | 888 | ||
4/Anomaly | 75.71 | 67 | 25.7 | 49 | 501 | 5 | 17 | Moving towards the bed |
4/Anomaly | 78.26 | 69 | 25.8 | 49 | 424 | 4 | ||
3 | 75.61 | 102 | 25.8 | 50 | 556 | 2 | 18 | Gas value & health state correlation |
3 | 77.61 | 92 | 26 | 50 | 508 | 5 | ||
4/Anomaly | 66.4 | 101 | 25.9 | 49 | 585 | 888 | 19 | Two people occupy the room |
4/Anomaly | 66.4 | 103 | 25.9 | 49 | 578 | 888 | ||
4/Anomaly | 77.83 | 68 | 25.9 | 49 | 425 | 4 | 20 | Interaction around the patient/bed |
4/Anomaly | 77.11 | 53 | 25.9 | 49 | 541 | 5 |
Data Type | Learning Model | Learn Rate | Num. of Hidden Units | Num. of Iter. | 4 Cases | 10 Categories | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1012-by-2 Inputs | 1012-by-4 Inputs | 312-by-6 Inputs | |||||||||||
Validation (Valid.) Accuracy (Acc.) | Test Acc. | Train Time (s) | Valid. Acc. | Test Acc. | Train Time (s) | Valid. Acc. | Test Acc. | Train Time (s) | |||||
(a) | |||||||||||||
Image | CNN | 1 × 10−3 | 256 | 1000 | 79.1 | 86.3 | 18 | 99.3 | 95.6 | 23 | 92.6 | 93.8 | 18 |
30,000 | 98.0 | 92.2 | 472 | 100 | 97.6 | 632 | 92.6 | 96.9 | 462 | ||||
Seq. | LSTM | 32 | 200 | 100 | 97.6 | 14 | 100 | 100 | 14 | 100 | 90 | 21 | |
Bi-LSTM | 100 | 94.1 | 17 | 100 | 100 | 17 | 100 | 80 | 27 | ||||
Bi-LSTM + Btc.N. | 100 | 75 | 18 | 100 | 100 | 18 | 100 | 90 | 31 | ||||
(b) | |||||||||||||
Image | CNN | 1 × 10−3 | 144 | 5000 | 100 * | 100 | 76 * | 100 | 100 | 81 | 100 | 100 | 67 |
Seq. | LSTM | 1000 | 100 | 100 | 37 | 100 | 100 | 23 | 100 | 100 | 20 | ||
Bi-LSTM | 100 | 100 | 61 | 100 | 100 | 32 | 100 | 100 | 25 | ||||
Bi-LSTM + Btc.N. | - | - | - | - | - | - | 100 | 100 | 57 |
Prediction Score Threshold: 0.89 | Prediction Score Threshold: 0.8 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Training Time (s) | 67 | 20 | 25 | 57 | 169 | The system’s overall performance in five consecutive days | ||||
Classification Labels | CNN | LSTM | Bi-LSTM | Bi-LSTM + Btc.N. | Total Update | 8 June 2021 | 9 June 2021 | 10 June 2021 | 11 June 2021 | 12 June 2021 |
11 | 1 | 1 | - | - | 2 | 0 | 0 | 0 | 0 | 0 |
12 | 1 | 1 | - | - | 2 | 0 | 0 | 0 | 0 | 0 |
13 | 1 | 1 | - | - | 2 | 0 | 0 | 0 | 0 | 0 |
14 | 1 | 1 | - | - | 2 | 0 | 0 | 0 | 0 | 0 |
15 | 1 | - | - | 1 | 2 | 134 | 705 | 644 | 709 | 685 |
16 | 1 | 1 | - | - | 2 | 0 | 0 | 0 | 0 | 0 |
17 | 1 | - | - | 1 | 2 | 61 | 201 | 203 | 203 | 214 |
18 | 1 | - | - | - | 1 | 270 | 485 | 495 | 528 | 527 |
19 | 1 | 1 | - | - | 2 | 0 | 0 | 0 | 0 | 0 |
20 | 1 | - | 1 | - | 2 | 0 | 0 | 0 | 0 | 14 |
Total Update | 10 | 6 | 1 | 2 | 19 | 465 | 1391 | 1342 | 1440 | 1440 |
Total Input | 10 | 10 | 4 | 3 | 20 | 465 | 1392 | 1343 | 1440 | 1440 |
Accuracy (%) | 100 | - | - | - | 95 | 100 | 99.93 | 99.93 | 100 | 100 |
Number of Inputs | |||||
---|---|---|---|---|---|
n-by-6 inputs at a time, n: | 1 | 50 | 100 | 500 | 1000 |
average prediction duration (seconds) | 0.0048 | 0.1848 | 0.2874 | 1.1568 | 2.5390 |
duration per 1-by-6 input (seconds) | 0.0048 | 0.0037 | 0.0029 | 0.0023 | 0.0025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erişen, S. Real-Time Learning and Monitoring System in Fighting against SARS-CoV-2 in a Private Indoor Environment. Sensors 2022, 22, 7001. https://doi.org/10.3390/s22187001
Erişen S. Real-Time Learning and Monitoring System in Fighting against SARS-CoV-2 in a Private Indoor Environment. Sensors. 2022; 22(18):7001. https://doi.org/10.3390/s22187001
Chicago/Turabian StyleErişen, Serdar. 2022. "Real-Time Learning and Monitoring System in Fighting against SARS-CoV-2 in a Private Indoor Environment" Sensors 22, no. 18: 7001. https://doi.org/10.3390/s22187001
APA StyleErişen, S. (2022). Real-Time Learning and Monitoring System in Fighting against SARS-CoV-2 in a Private Indoor Environment. Sensors, 22(18), 7001. https://doi.org/10.3390/s22187001