Development of a Novel Approach for Detection of Equine Lameness Based on Inertial Sensors: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Lameness Detector 0.1 Device System
2.2. The Horses and Their Gait Assessment Protocol
2.3. Data Processing and Statistical Analyses
3. Results
3.1. Descriptive Statistics for the Mean Impulse Numbers Recorded in the Lame and Sound Contralateral Legs of the Assessed Horses
3.2. Comparisons between the Mean Impulse Values Recorded in the Lame and the Sound Contralateral Legs of the Assessed Horses
3.3. Correlations between the Mean Impulse Values Recorded in the Lame and the Sound Contralateral Legs of the Assessed Horses and Their Lameness Scores
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adams, S.B. The lameness examination in horses. In The Merck Veterinary Manual, 20th ed.; O’Neil, M.J., Ed.; Wiley: Whitehouse Station, NJ, USA, 2015; Available online: https://www.msdvetmanual.com/musculoskeletal-system/lameness-in-horses/the-lameness-examination-in-horses (accessed on 12 February 2022).
- Kane, A.; Traub-Dargatz, J.; Losinger, W.C.; Garber, L.P. The occurrence and causes of lameness and laminitis in the US horse population. Am. Assoc. Equine Pract. 2000, 46, 277–280. [Google Scholar]
- Atkins, C.A.; Pond, K.R.; Madsen, C.K.; Moorman, V.J.; Roman-Muniz, I.N.; Archibeque, S.L.; Grandin, T. Sensor analysis and initial assessment of detectable first hoof contacts and last break-overs as unique signal fluctuations for equine gait analysis. Transl. Anim. Sci. 2019, 3, 1389–1398. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Marghitu, D.B.; Rane, A.; Schumacher, J. Sample entropy analysis of horses with anf without lameness at trot before and after sedation. Math. Probl. Eng. 2020, 2020, 7. [Google Scholar] [CrossRef]
- Keegan, K.G.; Dent, E.V.; Wilson, D.A.; Janicek, J.; Kramer, J.; Lacarrubba, A.; Walsh, D.M.; Cassells, M.W.; Esther, T.M.; Schiltz, P.; et al. Repeatability of subjective evaluation of lameness in horses. Equine Vet. J. 2010, 42, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Clayton, H.M.; Hobbs, S.-J. The role of biomechanical analysis of horse and rider in equitation science. Appl. Anim. Behav. Sci. 2017, 190, 123–132. [Google Scholar] [CrossRef]
- Guerra Filho, G. Optical Motion Capture: Theory and Implementation. RITA 2005, 12, 61–90. [Google Scholar]
- Keegan, K.G.; MacAllister, C.G.; Wilson, D.A.; Gedon, C.A.; Kramer, J.; Yonezawa, Y.; Maki, H.; Pai, P.F. Comparison of an inertial sensor system with a stationary force plate for evaluation of horses with bilateral forelimb lameness. Am. J. Vet. Res. 2012, 73, 368–374. [Google Scholar] [CrossRef]
- Back, W.; MacAllister, C.G.; van Heel, M.C.V.; Pollmeier, M.; Hanson, P.D. Vertical frontlimb ground reaction forces of sound and lame warmbloods differ from those in Quarter Horses. JEVS 2007, 27, 123–129. [Google Scholar] [CrossRef]
- Oosterlinck, M.; Pille, F.; Back, W.; Dewulf, J.; Gasthuys, F. Use of a stand-alone pressure plate for the objective evaluation of forelimb symmetry in sound ponies at walk and trot. Vet. J. 2010, 183, 305–309. [Google Scholar] [CrossRef]
- Eichelberger, P.; Ferraro, M.; Minder, U.; Denton, T.; Blasimann, A.; Krause, F.; Baur, H. Analysis of accuracy in optical motion capture—A protocol for laboratory setup evaluation. J. Biomech. 2016, 49, 2085–2088. [Google Scholar] [CrossRef]
- Ahmadi, A.; Destelle, F.; Monaghan, D.; Connor, N.E.O.; Richter, C.; Moran, K. A framework for comprehensive analysis of a swing in sports using low-cost inertial sensors. In Proceedings of the SENSORS, 2014 IEEE, Valencia, Spain, 2–5 November 2014; pp. 2211–2214. [Google Scholar]
- Punchihewa, N.G.; Arakawa, H.; Chosa, E.; Yamako, G. A hand-worn inertial measurement unit for detection of bat-ball impact during baseball hitting. Sensors 2021, 21, 3002. [Google Scholar] [CrossRef]
- Wilkinson, R.D.; Lichtwark, G.A. Evaluation of an inertial measurement unit-based approach for determining centre-of-mass movement during non-seated cycling. J. Biomech. 2021, 126, 110441. [Google Scholar] [CrossRef] [PubMed]
- Chambers, R.; Gabbett, T.J.; Cole, M.H.; Beard, A. The use of wearable microsensors to quantify sport-specific movements. Sports Med. 2015, 45, 1065–1081. [Google Scholar] [CrossRef] [PubMed]
- King, K.; Hough, J.; McGinnis, R.; Perkins, N.C. A new technology for resolving the dynamics of a swinging bat. Sports Eng. 2012, 15, 41–52. [Google Scholar] [CrossRef]
- Nandy, A.; Chakraborty, S.; Chakraborty, J.; Venture, G. 3—Low-cost sensors for gait analysis. In Modern Methods for Affordable Clinical Gait Analysis; Nandy, A., Chakraborty, S., Chakraborty, J., Venture, G., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 25–44. [Google Scholar] [CrossRef]
- Valldeperes, A.; Altuna, X.; Martinez-Basterra, Z.; Rossi-Izquierdo, M.; Benitez-Rosario, J.; Perez-Fernandez, N.; Rey-Martinez, J. Wireless inertial measurement unit (IMU)-based posturography. Eur. Arch. OtoRhinoLaryngol. 2019, 276, 3057–3065. [Google Scholar] [CrossRef] [PubMed]
- El-Sheimy, N.; Youssef, A. Inertial sensors technologies for navigation applications: State of the art and future trends. Satell. Navig. 2020, 1, 2. [Google Scholar] [CrossRef]
- Chen, Z.J.; He, C.; Gu, M.H.; Xu, J.; Huang, X.L. Kinematic evaluation via inertial measurement unit associated with upper extremity motor function in subacute stroke: A cross-sectional study. J. Heal. Eng. 2021, 2021, 4071645. [Google Scholar] [CrossRef]
- Zhao, J.; Obonyo, E.; Bilén, S.G. Wearable inertial measurement unit sensing system for musculoskeletal disorders prevention in construction. Sensors 2021, 21, 1324. [Google Scholar] [CrossRef]
- Bolink, S.A.A.N.; Naisas, H.; Senden, R.; Essers, H.; Heyligers, I.C.; Meijer, K.; Grimm, B. Validity of an inertial measurement unit to assess pelvic orientation angles during gait, sit–stand transfers and step-up transfers: Comparison with an optoelectronic motion capture system*. Med. Eng. Phys. 2016, 38, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Bosch, S.; Serra Bragança, F.; Marin-Perianu, M.; Marin-Perianu, R.; Van der Zwaag, B.J.; Voskamp, J.; Back, W.; Van Weeren, R.; Havinga, P. EquiMoves: A wireless networked inertial measurement system for objective examination of horse gait. Sensors 2018, 18, 850. [Google Scholar] [CrossRef] [PubMed]
- Darbandi, H.; Serra Bragança, F.; van der Zwaag, B.J.; Voskamp, J.; Gmel, A.I.; Haraldsdóttir, E.H.; Havinga, P. Using different combinations of body-mounted IMU sensors to estimate speed of horses—A machine learning approach. Sensors 2021, 21, 798. [Google Scholar] [CrossRef] [PubMed]
- Keegan, K.G.; Wilson, D.A.; Kramer, J.; Reed, S.K.; Yonezawa, Y.; Maki, H.; Pai, P.F.; Lopes, M.A. Comparison of a body-mounted inertial sensor system-based method with subjective evaluation for detection of lameness in horses. Am. J. Vet. Res. 2013, 74, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Leelamankong, P.; Estrada, R.; Mählmann, K.; Rungsri, P.; Lischer, C. Agreement among equine veterinarians and between equine veterinarians and inertial sensor system during clinical examination of hindlimb lameness in horses. Equine Vet. J. 2020, 52, 326–331. [Google Scholar] [CrossRef] [PubMed]
- McCracken, M.J.; Kramer, J.; Keegan, K.G.; Lopes, M.; Wilson, D.A.; Reed, S.K.; LaCarrubba, A.; Rasch, M. Comparison of an inertial sensor system of lameness quantification with subjective lameness evaluation. Equine Veter. J. 2012, 44, 652–656. [Google Scholar] [CrossRef]
- Donnell, J.R.; Frisbie, D.D.; King, M.R.; Goodrich, L.R.; Haussler, K.K. Comparison of subjective lameness evaluation, force platforms and an inertial-sensor system to identify mild lameness in an equine osteoarthritis model. Vet. J. 2015, 206, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.P.; Reed, S.K.; Schoonover, M.J.; Whitfield, C.T.; Yonezawa, Y.; Maki, H.; Pai, P.F.; Keegan, K.G. Associations of force plate and body-mounted inertial sensor measurements for identification of hind limb lameness in horses. Am. J. Vet. Res. 2016, 77, 337–345. [Google Scholar] [CrossRef]
- Saitua, A.; Becero, M.; Argüelles, D.; Castejón-Riber, C.; Sánchez de Medina, A.; Satué, K.; Muñoz, A. Combined Effects of Water Depth and Velocity on the Accelerometric Parameters Measured in Horses Exercised on a Water Treadmill. Animals 2020, 10, 236. [Google Scholar] [CrossRef]
- Roepstorff, L.; Wiestner, T.; Weishaupt, M.A.; Egenvall, E. Comparison of microgyro-based measurements of equine metatarsal/metacarpal bone to a highspeed video locomotion analysis system during treadmill locomotion. Vet. J. 2013, 198 (Suppl. S1), e157–e160. [Google Scholar] [CrossRef]
- American Association of Equine Practicioners. Lameness Exams: Evaluating the Lame Horse. Available online: https://aaep.org/horsehealth/lameness-exams-evaluating-lame-horse (accessed on 17 February 2022).
- van Weeren, P.R.; Pfau, T.; Rhodin, M.; Roepstroff, L.; Serra Barança, F.; Weishaupt, M.A. Do we have to redefine lameness in the era of qualitative gait analysis? Equine Vet. J. 2017, 49, 567–569. [Google Scholar] [CrossRef]
- Fiske-Jackson, A. Is he use of ojective gait analysis inevitable? In Proceedings of the BEVA Annual Congress, Birmingham, UK, 13 September 2019; p. 144. [Google Scholar]
- Hardeman, A.M.; van Weeren, P.R.; Serra Barança, F.; Bok, H.G.J. A first exploration of perceived pros and cons of quantitative gait analysis in equine clinical practice. Equine Vet. Educ. 2022, 34, e438–e444. [Google Scholar] [CrossRef]
- Ishihara, A.; Bertone, A.L.; Rajala-Schultz, P.J. Association between subjective lameness grade and kinetic gait parameters in horses with experimentally induced forelimb lameness. Am. J. Vet. Res. 2005, 66, 1805–1815. [Google Scholar] [CrossRef] [PubMed]
- Kai, M.; Aoki, O.; Hiraga, A.; Oki, H.; Tokuriki, M. Use of an instrument sandwiched between the hoof and shoe to measure vertical ground reaction forces and three-dimensional acceleration at the walk, trot, and canter in horses. Am. J. Vet. Res. 2000, 61, 979–985. [Google Scholar] [CrossRef]
- Keegan, K.G.; Kramer, J.; Yonezawa, Y.; Maki, H.; Pai, P.F.; Dent, E.V.; Kellerman, T.E.; Wilson, D.A.; Reed, S.K. Assessment of repeatability of a wireless, inertial sensor–based lameness evaluation system for horses. Am. J. Vet. Res. 2011, 72, 1156–1163. [Google Scholar] [CrossRef] [PubMed]
- Parkes, R.S.; Weller, R.; Groth, A.M.; May, S.; Pfau, T. Evidence of the development of ‘domain-restricted’ expertise in the recognition of asymmetric motion characteristics of hindlimb lameness in the horse. Equine Vet. J. 2009, 41, 112–117. [Google Scholar] [CrossRef]
- Starke, S.D.; Witte, T.H.; May, S.A.; Pfau, T. Accuracy and precision of hind limb foot contact timings of horses determined using a pelvis-mounted inertial measurement unit. J. Biomech. 2012, 45, 1522–1528. [Google Scholar] [CrossRef] [PubMed]
- Olsen, E.; Andersen, P.H.; Pfau, T. Accuracy and precision of equine gait event detection during walking with limb and trunk mounted inertial sensors. Sensors 2012, 12, 8145–8156. [Google Scholar] [CrossRef] [PubMed]
AAEP Score | Right Fore | Left Fore | Right Hind | Left Hind | AAEP [28] Guidelines for Lameness Grading System |
---|---|---|---|---|---|
1/5 | 1 | 0 | 0 | 1 | Lameness is difficult to observe, and it is not consistently apparent, regardless of the circumstances |
2/5 | 0 | 1 | 0 | 1 | Lameness is difficult to observe at a walk or when trotting in a straight line but is consistently apparent under certain circumstances |
3/5 | 1 | 0 | 1 | 0 | Lameness is consistently observable at a trot under all circumstances |
4/5 | 1 | 0 | 0 | 1 | Lameness is obvious at a walk |
5/5 | 0 | 1 | 1 | 0 | Lameness produces minimal weight bearing in motion and/or at rest or a complete inability to move |
Lameness Scores | Sound Foreleg | Sound Hind-Leg | Lame Foreleg | Lame Hind-Leg | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
X Axis | Y Axis | Z Axis | X Axis | Y Axis | Z Axis | X Axis | Y Axis | Z Axis | X Axis | Y Axis | Z Axis | |
1/5 | 65.2 | 62.8 | 62.4 | 66.6 | 67.6 | 62.4 | 86.4 | 67.4 | 66.2 | 87.8 | 66.6 | 64.2 |
2/5 | 64 | 63.6 | 63.4 | 67.4 | 66.4 | 61.6 | 91.8 | 61.6 | 61.8 | 88.6 | 66 | 64 |
3/5 | 61.2 | 65.6 | 58.6 | 66.6 | 67.2 | 62 | 96.4 | 60.6 | 59.6 | 93.2 | 63 | 65.4 |
4/5 | 64 | 68 | 61.6 | 67 | 64.2 | 62 | 109.6 | 65.8 | 63.4 | 111.6 | 61.4 | 62 |
5/5 | 63 | 65.2 | 64.8 | 67.2 | 64.8 | 62.8 | 124 | 66.2 | 64.8 | 130.4 | 67.8 | 63.3 |
MIN | 61.2 | 62.8 | 58.6 | 66.6 | 64.2 | 61.6 | 86.4 | 60.6 | 59.6 | 87.8 | 61.4 | 62 |
MAX | 65.2 | 68 | 64.8 | 67.4 | 67.6 | 62.8 | 124 | 67.4 | 66.2 | 130 | 67.8 | 65.4 |
Mean | 63.5 | 65 | 62.2 | 67 | 66 | 62.2 | 102 | 64.3 | 63.2 | 102 | 65 | 63.8 |
Median | 64 | 65.2 | 62.4 | 67 | 66.4 | 62 | 96.4 | 65.8 | 63.4 | 93.2 | 66 | 64 |
STDEV.S | 1.49 | 2.01 | 2.32 | 0.36 | 1.49 | 0.46 | 15.2 | 3.02 | 2.57 | 18.4 | 2.66 | 1.25 |
SEM | 0.67 | 0.9 | 1.04 | 0.16 | 0.66 | 0.2 | 6.78 | 1.35 | 1.15 | 8.24 | 1.19 | 0.56 |
Axis | In the Lame Foreleg | In the Sound Foreleg | Comparison of the Means | Effect | The Power of the Test | |||
---|---|---|---|---|---|---|---|---|
m | σ | m | σ | t(4) | p | d (Cohen) | ||
X | 101.64 | 15.16 | 63.48 | 1.49 | 5.449 | 0.006 * | 2.437 | 0.9771 |
Y | 64.32 | 3.02 | 65.04 | 2.01 | 0.441 | 0.682 | 0.197 | 0.0638 |
Z | 63.16 | 2.57 | 62.16 | 2.32 | 1.110 | 0.329 | 0.496 | 0.1391 |
Axis | In the Lame Hind-Leg | In the Sound Hind-Leg | Comparison of the Means | Effect | The Power of the Test | |||
---|---|---|---|---|---|---|---|---|
m | σ | m | σ | t(4) | p | d (Cohen) | ||
X | 102.32 | 18.42 | 66.96 | 0.36 | 4.323 | 0.012 * | 1.933 | 0.8908 |
Y | 64.96 | 2.66 | 66.04 | 1.49 | 0.885 | 0.426 | 0.396 | 0.1065 |
Z | 63.84 | 1.23 | 62.16 | 0.46 | 2.822 | 0.048 * | 1.262 | 0.5698 |
Axis | In the Lame Foreleg | In the Sound Foreleg | ||
---|---|---|---|---|
ρ | p | ρ | p | |
X | 1.000 * | <0.001 | −0.616 | 0.269 |
Y | −0.100 | 0.873 | 0.700 | 0.188 |
Z | −0.100 | 0.873 | 0.200 | 0.747 |
Axis | In the Lame Hind-Leg | In the Sound Hind-Leg | ||
---|---|---|---|---|
ρ | p | ρ | p | |
X | 1.000 * | <0.001 | 0.308 | 0.614 |
Y | 0.000 | 1.000 | −0.800 | 0.104 |
Z | −0.600 | 0.285 | 0.359 | 0.553 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crecan, C.M.; Morar, I.A.; Lupsan, A.F.; Repciuc, C.C.; Rus, M.A.; Pestean, C.P. Development of a Novel Approach for Detection of Equine Lameness Based on Inertial Sensors: A Preliminary Study. Sensors 2022, 22, 7082. https://doi.org/10.3390/s22187082
Crecan CM, Morar IA, Lupsan AF, Repciuc CC, Rus MA, Pestean CP. Development of a Novel Approach for Detection of Equine Lameness Based on Inertial Sensors: A Preliminary Study. Sensors. 2022; 22(18):7082. https://doi.org/10.3390/s22187082
Chicago/Turabian StyleCrecan, Cristian Mihaita, Iancu Adrian Morar, Alexandru Florin Lupsan, Calin Cosmin Repciuc, Mirela Alexandra Rus, and Cosmin Petru Pestean. 2022. "Development of a Novel Approach for Detection of Equine Lameness Based on Inertial Sensors: A Preliminary Study" Sensors 22, no. 18: 7082. https://doi.org/10.3390/s22187082
APA StyleCrecan, C. M., Morar, I. A., Lupsan, A. F., Repciuc, C. C., Rus, M. A., & Pestean, C. P. (2022). Development of a Novel Approach for Detection of Equine Lameness Based on Inertial Sensors: A Preliminary Study. Sensors, 22(18), 7082. https://doi.org/10.3390/s22187082