A New Construction of -QAM Golay Complementary Sequences
Abstract
:1. Introduction
- A new description of a -QAM constellation with independent quaternary variables is presented in this paper, which has one more variable than the previous description and includes it as a special case;
- On this basis, a new construction of -QAM GCSs is proposed, which greatly increases the family size and improves the data rate;
- More specifically, the new construction of the QAM sequences includes the construction in [23] as a special case and has a larger family size, which means a higher data rate;
- At the same time, the construction of 16-QAM GCSs in [28] is also a special case in this paper when ;
- Furthermore, the proposed sequences in this paper have the same PMEPR upper bounds as the known ones, which increase the data rate without degrading the PMEPR performance.
2. Materials and Methods
2.1. Golay Complementary Sequences
2.2. Generalized Boolean Functions and Standard -PSK GDJ GCSs
2.3. Construction of QAM Signals from a QPSK Constellation
2.4. Family Size and Code Rate
2.5. PMEPR Upper Bound of GCSs
3. Results and Discussion
3.1. New Description of -QAM Constellation
3.2. New Construction of -QAM GCS
3.2.1. Construction of New QAM Sequences
3.2.2. Family Size of New QAM Sequences
3.2.3. PMEPR Upper Bound of New QAM Sequences
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACF | Aperiodic Correlation Function |
ADC | Analog-to-Digital Converter |
BER | Bit Error Ratio |
CCC | Complete Complementary Code |
CF | Clipping and Filtering |
CSS | Complementary Sequence Set |
DAC | Digital-to-Analog Converter |
GBF | Generalized Boolean function |
GCS | Golay Complementary Sequence |
GDJ | Golay–Davis–Jedwab |
ICI | Inter-Channel Interference |
LAN | Local Area Network |
OFDM | Orthogonal Frequency Division Multiplexing |
PMEPR | Peak-to-Mean Envelope Power Ratio |
PSK | Phase Shift Keying |
PTS | Partial Transmit Sequence |
PU | Para-Unitary |
QAM | Quadrature Amplitude Modulation |
QPSK | Quadrature Phase Shift Keying |
RF | Radio Frequency |
SI | Side Information |
References
- Sharif, M.; Tarokh, V.; Hassibi, B. Peak power reduction of OFDM signals with sign adjustment. IEEE Trans. Commun. 2009, 57, 2160–2166. [Google Scholar] [CrossRef]
- Rugini, L. Symbol Error Probability of Hexagonal QAM. IEEE Commun. Lett. 2016, 20, 1523–1526. [Google Scholar] [CrossRef]
- Hong, E.; Kim, H.; Yang, K.; Har, D. Pilot-aided side information detection in SLM-based OFDM systems. IEEE Trans. Wirel. Commun. 2013, 12, 3140–3147. [Google Scholar] [CrossRef]
- Jiang, T.; Li, C.; Ni, C. Effect of PAPR reduction on spectrum and energy efficiencies in OFDM systems with Class-A HPA over AWGN channel. IEEE Trans. Broadcast. 2013, 59, 513–519. [Google Scholar] [CrossRef]
- Jiang, T.; Ni, C.; Xu, Y. Novel 16-QAM and 64-QAM Near-Complementary Sequences with Low PMEPR in OFDM Systems. IEEE Trans. Commun. 2016, 64, 4320–4330. [Google Scholar] [CrossRef]
- Litsyn, S.; Shpunt, A. A balancing method for PMEPR reduction in OFDM signals. IEEE Trans. Commun. 2007, 55, 683–691. [Google Scholar] [CrossRef]
- Sharif, M.; Hassibi, B. High-rate codes with bounded PMEPR for BPSK and other symmetric constellations. IEEE Trans. Commun. 2006, 54, 1160–1163. [Google Scholar] [CrossRef]
- Tseng, C.C.; Liu, C. Complementary sets of sequences. IEEE Trans. Inf. Theory 1972, 18, 644–652. [Google Scholar] [CrossRef]
- Davis, J.A.; Jedwab, L. Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes. IEEE Trans. Inf. Theory 1999, 45, 2397–2417. [Google Scholar] [CrossRef]
- Rößing, C.; Tarokh, V. A construction of 16-QAM Golay complementary sequences. IEEE Trans. Inf. Theory 2001, 47, 2091–2093. [Google Scholar]
- Sadjadpour, H.R. Construction of non-square M-QAM sequences with low PMEPR for OFDM systems. IEE Proc.-Commun. 2004, 151, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Golomb, S.W. A New Construction of 16-QAM Near Complementary Sequences. IEEE Trans. Inf. Theory 2010, 56, 5772–5779. [Google Scholar] [CrossRef]
- Liu, Z.; Guan, Y. 16-QAM Almost-Complementary Sequences with Low PMEPR. IEEE Trans. Commun. 2016, 64, 668–679. [Google Scholar] [CrossRef]
- Zeng, F.; Zeng, X.; Zhang, Z.; Xuan, G. 8-QAM+ Periodic Complementary Sequence Sets. IEEE Commun. Lett. 2012, 16, 83–85. [Google Scholar] [CrossRef]
- Zeng, F.; Zeng, Y.; Zhang, L.; He, X.; Xuan, G.; Zhang, Z.; Peng, Y.; Qian, L.; Yan, L. 16-QAM Sequences with Good Periodic Autocorrelation Function. EICE Trans. Fundam. Electron. Commun. Comput. Sci. 2019, E102-A, 1697–1700. [Google Scholar] [CrossRef]
- Ma, D.; Wang, Z.; Li, H. A Generalized Construction of Non-Square M-QAM Sequences with Low PMEPR for OFDM Systems. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2016, E99-A, 1222–1227. [Google Scholar] [CrossRef]
- Tarokh, B.; Sadjadpour, H.R. Construction of OFDM M-QAM Sequences with low peak-to-average power ratio. IEEE Trans. Commun. 2003, 51, 25–28. [Google Scholar] [CrossRef]
- Chong, C.V.; Venkataramani, R.; Tarokh, V. A new construction of 16-QAM Golay complementary sequences. IEEE Trans. Inf. Theory 2003, 49, 2953–2959. [Google Scholar] [CrossRef]
- Lee, H.; Golomb, S.W. A new construction of 64-QAM Golay complementary sequences. IEEE Trans. Inf. Theory 2006, 52, 1663–1670. [Google Scholar]
- Li, Y. Comments on “A new construction of 16-QAM Golay complementary sequences” and extension for 64-QAM Golay sequences. IEEE Trans. Inf. Theory 2008, 54, 3246–3251. [Google Scholar]
- Wang, Z.; Gong, G.; Feng, R. A generalized construction of OFDM M-QAM sequences with low peak-to-average power ratio. Adv. Math. Commun. 2009, 3, 421–428. [Google Scholar] [CrossRef]
- Chang, C.; Li, Y.; Hirata, J. New 64-QAM Golay complementary sequences. IEEE Trans. Inf. Theory 2010, 56, 2479–2485. [Google Scholar] [CrossRef]
- Li, Y. A construction of general QAM Golay complementary sequences. IEEE Trans. Inf. Theory 2010, 56, 5765–5771. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Guan, Y. New constructions of general QAM Golay complementary sequences. IEEE Trans. Inf. Theory 2013, 59, 7684–7692. [Google Scholar] [CrossRef]
- Zeng, F.; Zeng, X.; Zhang, Z.; Xuan, G. Novel 16-QAM complementary sequences. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2014, E97-A, 1631–1634. [Google Scholar] [CrossRef]
- Zeng, F.; He, X.; Li, G.; Xuan, G.; Zhang, Z.; Peng, Y.; Lu, S.; Yan, L. More General QAM Complementary Sequences. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2018, E101-A, 2409–2414. [Google Scholar] [CrossRef]
- Budišin, S.Z.; Spasojević, P. Paraunitary-based Boolean Generator for QAM Complementary Sequences of Length . IEEE Trans. Inf. Theory 2018, 64, 5938–5956. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, L.; Zeng, F.; He, X.; Zhang, Z. New 16-QAM Golay Complementary Sequences. In Proceedings of the 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN), Chongqing, China, 12–15 June 2019. [Google Scholar]
- Zeng, Y.; Zhang, L.; Zeng, F.; He, X.; Xuan, G.; Zhang, Z. New QAM Complementary Sequences for Control of Peak Envelope Power of OFDM Signals. IEEE Access 2019, 7, 89901–89912. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, D.; Gong, G.; Xue, E. New Construction of Complementary Sequence (or Array) Sets and Complete Complementary Codes. IEEE Trans. Inf. Theory 2021, 67, 4902–4928. [Google Scholar] [CrossRef]
- Wang, Z.; Xue, E.; Gong, G. New Constructions of Complementary Sequence Pairs over -QAM. IEEE Trans. Inf. Theory 2022, 68, 3114–3129. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, F.; Adhikary, A.R.; Fan, P. A Generalized Construction of Multiple Complete Complementary Codes and Asymptotically Optimal Aperiodic Quasi-Complementary Sequence Sets. IEEE Trans. Commun. 2020, 68, 3564–3571. [Google Scholar] [CrossRef]
- Rahmatallah, Y.; Mohan, S. Peak-To-Average Power Ratio Reduction in OFDM Systems: A Survey and Taxonomy. IEEE Commun. Surv. Tutor. 2013, 15, 1567–1592. [Google Scholar] [CrossRef]
- Zhao, J.; Ni, S.; Gong, Y. Peak-to-Average Power Ratio Reduction of FBMC/OQAM Signal Using a Joint Optimization Scheme. IEEE Access 2017, 5, 15810–15819. [Google Scholar] [CrossRef]
- Joo, H.S.; Kim, K.H.; No, J.S.; Shin, D.J. New PTS Schemes for PAPR Reduction of OFDM Signals Without Side Information. IEEE Trans. Broadcast. 2017, 63, 562–570. [Google Scholar] [CrossRef]
- Fiedler, F.; Jedwab, J.; Parker, M.G. A framework for the construction of Golay sequences. IEEE Trans. Inf. Theory 2008, 54, 3114–3129. [Google Scholar] [CrossRef]
- Liu, T.; Xu, C.; Li, Y. Multiple complementary sequence sets with low inter-set cross-correlation property. IEEE Signal Process. Lett. 2019, 26, 913–917. [Google Scholar] [CrossRef]
- Golay, M.J.E. Complementary series. IRE Trans. Inf. Theory 1961, 7, 82–87. [Google Scholar] [CrossRef]
- Paterson, K.G. Generalized Reed-Muller codes and power control in OFDM modulation. IEEE Trans. Inf. Theory 2000, 46, 104–120. [Google Scholar] [CrossRef]
- Schmidt, K.U. On cosets of the generalized first-order reed-muller code with low PMEPR. IEEE Trans. Inf. Theory 2006, 52, 3220–3232. [Google Scholar] [CrossRef]
- Zeng, F.; Zeng, Y.; Zhang, L.; He, X.; Xuan, G.; Zhang, Z. A Sufficient Condition for General QAM Complementary Sequence Pairs. Can. J. Electr. Comput. Eng. 2020, 43, 43–56. [Google Scholar] [CrossRef]
- Liu, Z.; Guan, Y.; Parampalli, U. New complete complementary codes for Peak-to-Mean power control in multi-carrier CDMA. IEEE Trans. Commun. 2014, 62, 1105–1113. [Google Scholar] [CrossRef]
NO. | NO. | NO. | NO. | ||||
---|---|---|---|---|---|---|---|
1 | (0, 0, 0) | 5 | (1, 0, 2) | 9 | (2, 0, 0) | 13 | (3, 0, 2) |
2 | (0, 1, 3) | 6 | (1, 1, 1) | 10 | (2, 1, 3) | 14 | (3, 1, 1) |
3 | (0, 2, 2) | 7 | (1, 2, 0) | 11 | (2, 2, 2) | 15 | (3, 2, 0) |
4 | (0, 3, 1) | 8 | (1, 3, 3) | 12 | (2, 3, 1) | 16 | (3, 3, 3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, G.; Han, Z.; Li, D.
A New Construction of
Peng G, Han Z, Li D.
A New Construction of
Peng, Gang, Zhiren Han, and Dewen Li.
2022. "A New Construction of
Peng, G., Han, Z., & Li, D.
(2022). A New Construction of