A Pair of Coupled Waveguides as a Classical Analogue for a Solid-State Qubit
Abstract
:1. Introduction
2. Model and Methods
2.1. Optical-Mechanical Analogy and General Scheme of the Optical Nonlinear Element
2.2. Estimates
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bogaerts, W.; Pérez, D.; Capmany, J.; Miller, D.A.B.; Poon, J.; Englund, D.; Morichetti, F.; Melloni, A. Programmable photonic circuits. Nature 2020, 586, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Le Jeannic, H.; Tiranov, A.; Carolan, J.; Ramos, T.; Wang, Y.; Appel, M.H.; Scholz, S.; Wieck, A.D.; Ludwig, A.; Rotenberg, N.; et al. Dynamical photon–photon interaction mediated by a quantum emitter. Nat. Phys. 2022, 18, 1191–1195. [Google Scholar] [CrossRef]
- Chen, X.; Milosevic, M.M.; Stankovic, S.; Reynolds, S.; Bucio, T.D.; Li, K.; Thomson, D.J.; Gardes, F.; Reed, G.T. The emergence of silicon photonics as a flexible technology platform. Proc. IEEE 2018, 106, 2101–2116. [Google Scholar] [CrossRef] [Green Version]
- Smit, M.; Williams, K.; van der Tol, J. Past, present, and future of InP-based photonic integration. APL Photonics 2019, 4, 050901. [Google Scholar] [CrossRef] [Green Version]
- Bogdanov, S.; Shalaginov, M.Y.; Boltasseva, A.; Shalaev, V.M. Material platforms for integrated quantum photonics. Opt. Mater. Express 2016, 7, 111–132. [Google Scholar] [CrossRef] [Green Version]
- Robertson, J.; Hejda, M.; Bueno, J.; Hurtado, A. Ultrafast optical integration and pattern classification for neuromorphic photonics based on spiking VCSEL neurons. Sci. Rep. 2020, 10, 6098. [Google Scholar] [CrossRef] [Green Version]
- Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2018, 2, 79. [Google Scholar] [CrossRef]
- Yan, F.; Gustavsson, S.; Kamal, A.; Birenbaum, J.; Sears, A.P.; Hover, D.; Gudmundsen, T.J.; Rosenberg, D.; Samach, G.; Weber, S.; et al. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun. 2016, 7, 12964. [Google Scholar] [CrossRef] [Green Version]
- Peltonen, J.T.; Coumou, P.C.J.J.; Peng, Z.H.; Klapwijk, T.M.; Tsai, J.S.; Astafiev, O.V. Hybrid rf SQUID qubit based on high kinetic inductance. Sci. Rep. 2018, 8, 10033. [Google Scholar] [CrossRef] [Green Version]
- Groszkowski, P.; Di Paolo, A.; Grimsmo, A.L.; Blais, A.; I Schuster, D.; A Houck, A.; Koch, J. Coherence properties of the 0-π qubit. New J. Phys. 2018, 20, 043053. [Google Scholar] [CrossRef]
- Antonov, I.V.; Shaikhaidarov, R.S.; Antonov, V.N.; Astafiev, O.V. Superconducting ‘twin’ qubit. Phys. Rev. B 2020, 102, 115422. [Google Scholar] [CrossRef]
- Moskalenko, I.N.; Besedin, I.S.; Simakov, I.A.; Ustinov, A.V. Tunable coupling scheme for implementing two-qubit gates on fluxonium qubits. Appl. Phys. Lett. 2021, 119, 194001. [Google Scholar] [CrossRef]
- Dmitriev, A.Y.; Astafiev, O.V. A perspective on superconducting flux qubits. Appl. Phys. Lett. 2021, 119, 080501. [Google Scholar] [CrossRef]
- Bastrakova, M.V.; Pashin, D.S.; Rybin, D.A.; Schegolev, A.E.; Klenov, N.V.; Soloviev, I.I.; Gorchavkina, A.A.; Satanin, A.M. A superconducting adiabatic neuron in a quantum regime. Beilstein J. Nanotechnol. 2022, 13, 653–665. [Google Scholar] [CrossRef] [PubMed]
- Nichol, J.; Orona, L.A.; Harvey, S.; Fallahi, S.; Gardner, G.C.; Manfra, M.J.; Yacoby, A. High-fidelity entangling gate for double-quantum-dot spin qubits. Npj Quantum Inf. 2017, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Calderon-Vargas, F.A.; Barron, G.S.; Deng, X.-H.; Sigillito, A.J.; Barnes, E.; Economou, S.E. Fast high-fidelity entangling gates for spin qubits in Si double quantum dots. Phys. Rev. B 2019, 100, 035304. [Google Scholar] [CrossRef] [Green Version]
- Shvartsburg, A.B. Tunneling of electromagnetic waves: Paradoxes and prospects. Phys. Uspekhi 2007, 50, 37–51. [Google Scholar] [CrossRef]
- Leontovich, M.A.; Fock, V.A. The solution of the problem for electromagnetic waves diffraction near the Earth by the parabolic equation method. ZhETF 1946, 16, 557. (In Russian) [Google Scholar]
- Akhmanov, S.A. Khokhlov’s method in the theory of nonlinear waves. Phys. Uspekhi 1986, 29, 589–606. [Google Scholar] [CrossRef]
- Bogatskaya, A.; Klenov, N.V.; Tereshonok, M.V.; Adjemov, S.S.; Popov, A. Resonant interaction of electromagnetic wave with plasma layer and overcoming the radiocommunication blackout problem. J. Phys. D Appl. Phys. 2018, 51, 185602. [Google Scholar] [CrossRef]
- Bogatskaya, A.V.; Klenov, N.V.; Tereshonok, M.V.; Popov, A.M. “Quantum effects” for classical light in modern waveguide circuits. Laser Phys. Lett. 2019, 16, 056006. [Google Scholar] [CrossRef]
- Bogatskaya, A.V.; Volkova, E.A.; Klenov, N.V.; Tereshonok, M.V.; Popov, A.M. Towards the nonstationary theory of a telecommunication channel through a plasma sheath. IEEE Trans. Antennas Propag. 2020, 68, 4831–4838. [Google Scholar] [CrossRef]
- Available online: https://parts.jpl.nasa.gov/mmic/3-I.PDF (accessed on 10 October 2022).
- Available online: http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/bandstr.html (accessed on 10 October 2022).
- Debnath, S.; Linke, N.M.; Figgatt, C.; Landsman, K.A.; Wright, K.; Monroe, C. Demonstration of a small programmable quantum computer with atomic qubits. Nature 2016, 536, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Klenov, N.V.; Pugach, N.G.; Sharafiev, A.V.; Bakurskiy, S.V.; Kornev, V.K. Josephson junctions with nonsinusoidal current-phase relations based on heterostructures with a ferromagnetic spacer and their applications. Phys. Solid State 2010, 52, 2246–2251. [Google Scholar] [CrossRef]
- Saxena, I.F.; Fiesler, E. Adaptive multilayer optical neural network with optical thresholding. Opt. Eng. Opt. Eng. 1995, 34, 2435–2440. [Google Scholar] [CrossRef]
- Mourgias-Alexandris, G.; Tsakyridis, A.; Passalis, N.; Tefas, A.; Vyrsokinos, K.; Pleros, N. An all-optical neuron with sigmoid activation function. Opt. Express 2019, 27, 9620–9630. [Google Scholar] [CrossRef]
- Mourgias-Alexandris, G.; Tsakyridis, A.; Passalis, N.; Tefas, A.; Pleros, N. Experimental demonstration of an optical neuron with a logistic Sigmoid activation function. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 3–7 March 2019; pp. 1–3. [Google Scholar] [CrossRef]
- Kartashov, Y.V.; Vysloukh, V.A.; Torner, L. Resonant mode oscillations in modulated waveguiding structures. Phys. Rev. Lett. 2007, 99, 233903. [Google Scholar] [CrossRef] [Green Version]
- Sharapova, P.R.; Luo, K.H.; Herrmann, H.; Reichelt, M.; Meier, T.; Silberhorn, C. Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits. New J. Phys. 2017, 19, 123009. [Google Scholar] [CrossRef]
- Burenkov, I.A.; Novikova, I.; Tikhonova, O.V.; Polyakov, S.V. Coherent optical processes with an all-optical atomic simulator. Opt. Express 2020, 29, 330–341. [Google Scholar] [CrossRef]
- Petta, J.R.; Johnson, A.C.; Taylor, J.M.; Laird, E.A.; Yacoby, A.; Lukin, M.D.; Marcus, C.M.; Hanson, M.P.; Gossard, A.C. Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots. Science 2005, 309, 2180–2184. [Google Scholar] [CrossRef]
- Shcherbakova, A.V.; Fedorov, K.G.; Shulga, K.V.; Ryazanov, V.V.; Bolginov, V.V.; A Oboznov, V.; Egorov, S.V.; O Shkolnikov, V.; Wolf, M.J.; Beckmann, D.; et al. Fabrication and measurements of hybrid Nb/Al Josephson junctions and flux qubits with π-shifters. Supercond. Sci. Technol. 2015, 28, 025009. [Google Scholar] [CrossRef] [Green Version]
- Askerzade, I.; Bozbey, A.; Cantürk, M. Superconducting Quantum Bits. In Modern Aspects of Josephson Dynamics and Superconductivity Electronics. Mathematical Engineering; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Kannan, B.; Ruckriegel, M.J.; Campbell, D.L.; Kockum, A.F.; Braumüller, J.; Kim, D.K.; Kjaergaard, M.; Krantz, P.; Melville, A.; Niedzielski, B.M.; et al. Waveguide quantum electrodynamics with superconducting artificial giant atoms. Nature 2020, 583, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Klenov, N.V.; Kuznetsov, A.V.; I Soloviev, I.; Bakurskiy, S.V.; Tikhonova, O.V. Magnetic reversal dynamics of a quantum system on a picosecond timescale. Beilstein J. Nanotechnol. 2015, 6, 1946–1956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popolitova, D.V.; Klenov, N.V.; I Soloviev, I.; Bakurskiy, S.V.; Tikhonova, O.V. Unipolar magnetic field pulses as an advantageous tool for ultrafast operations in superconducting Josephson “atoms”. Beilstein J. Nanotechnol. 2019, 10, 1548–1558. [Google Scholar] [CrossRef] [PubMed]
- Arkhipov, R.; Pakhomov, A.; Arkhipov, M.; Demircan, A.; Morgner, U.; Rosanov, N.; Babushkin, I. Selective ultrafast control of multi-level quantum systems by subcycle and unipolar pulses. Opt. Express 2020, 28, 17020–17034. [Google Scholar] [CrossRef] [PubMed]
Material | Effective Mass (in Masses of Free Electron) | Forbidden Zone, eV | Permittivity of the Undoped Material, | Electron Mobility, cm2/V-s | Transport Frequency, s−1 |
---|---|---|---|---|---|
GaAs | 0.067 | 1.424 | 13 | 8500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schegolev, A.E.; Klenov, N.V.; Bogatskaya, A.V.; Yusupov, R.D.; Popov, A.M. A Pair of Coupled Waveguides as a Classical Analogue for a Solid-State Qubit. Sensors 2022, 22, 8286. https://doi.org/10.3390/s22218286
Schegolev AE, Klenov NV, Bogatskaya AV, Yusupov RD, Popov AM. A Pair of Coupled Waveguides as a Classical Analogue for a Solid-State Qubit. Sensors. 2022; 22(21):8286. https://doi.org/10.3390/s22218286
Chicago/Turabian StyleSchegolev, Andrey E., Nikolay V. Klenov, Anna V. Bogatskaya, Rustam D. Yusupov, and Alexander M. Popov. 2022. "A Pair of Coupled Waveguides as a Classical Analogue for a Solid-State Qubit" Sensors 22, no. 21: 8286. https://doi.org/10.3390/s22218286
APA StyleSchegolev, A. E., Klenov, N. V., Bogatskaya, A. V., Yusupov, R. D., & Popov, A. M. (2022). A Pair of Coupled Waveguides as a Classical Analogue for a Solid-State Qubit. Sensors, 22(21), 8286. https://doi.org/10.3390/s22218286