Probe Contact Force Monitoring during Conductivity Measurements of the Left Atrial Appendage to Support the Design of Novel Diagnostic and Therapeutic Procedures
Abstract
:1. Introduction
2. Background
3. Materials and Methods
3.1. Forward Experiment
3.2. Reverse Experiment
3.3. Hyperhydration Experiment
3.4. Data Acquisition
3.5. Force Monitoring
- Firstly, the sample was placed on the weighing scales, and the scale was tared.
- The probe was placed in contact with the sample and adjusted until the mass read the appropriate value for the desired probe contact force as per (2).
- The mass was monitored during the conductivity measurement, and if the mass varied by more than 2% over the course of the conductivity measurement, the measurement was repeated.
3.6. Statistical Analyses
3.7. Tissue Handling
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heaviside, O. Electrical Papers; Macmillan and Company: London, UK; New York, NY, USA, 1894. [Google Scholar]
- Miklavčič, D.; Pavšelj, N.; Hart, F.X. Electric Properties of Tissues. In Wiley Encyclopedia of Biomedical Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Quek, S.C.; Mould, T.; Canfell, K.; Singer, A.; Skladnev, V.; Coppleson, M. The Polarprobe—Emerging technology for cervical cancer screening. Ann. Acad. Med. Singap. 1998, 27, 717–721. [Google Scholar] [PubMed]
- Brown, B.H.; Tidy, J.A.; Boston, K.; Blackett, A.D.; Smallwood, R.H.; Sharp, F. Relation between tissue structure and imposed electrical current flow in cervical neoplasia. Lancet 2000, 355, 892–895. [Google Scholar] [CrossRef]
- Jokhi, R.P.; Ghule, V.V.; Brown, B.H.; Anumba, D.O.C. Reproducibility and repeatability of measuring the electrical impedance of the pregnant human cervix-the effect of probe size and applied pressure. Biomed. Eng. Online 2009, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Istuk, N.; la Gioia, A.; Benchakroun, H.; Lowery, A.; McDermott, B.; O’Halloran, M. Relationship Between the Conductivity of Human Blood and Blood Counts. IEEE J. Electromagn. RF Microwaves Med. Biol. 2021, 6, 184–190. [Google Scholar] [CrossRef]
- Gabriel, C. Compilation of the Dielectric Properties of Body Tissues At Rf and Microwave Frequencies; Department of Physics, King’s College London: London, UK, 1996. [Google Scholar]
- Peyman, A.; Gabriel, C.; Grant, E.H. Complex permittivity of sodium chloride solutions at microwave frequencies. Bioelectromagnetics 2007, 28, 264–274. [Google Scholar] [CrossRef]
- Gabriel, C.; Peyman, A.; Grant, E.H. Electrical conductivity of tissue at frequencies below 1 MHz. Phys. Med. Biol. 2009, 54, 4863–4878. [Google Scholar] [CrossRef]
- Benchakroun, H.; Loughlin, D.O.; Ištuk, N.; Halloran, M.O.; la Gioia, A. Evaluation of the Feasibility of Three Custom-made Tetrapolar Probes for Electrical Characterization of Cardiac Tissue. In Proceedings of the 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 22–26 March 2021. [Google Scholar]
- Santamaría, L.; Alonso, L.; Ingelmo, I.; Pozuelo, J.M.; Rodriguez, R. Neuroendocrine Cells and Peptidergic Innervation in Human and Rat Prostrate. In Advances in Anatomy, Embryglogy and Cell Biology; Springer: Berlin/Heidelberg, Germany, 2007; Volume 194, pp. 2–11. [Google Scholar]
- Aycock, K.N.; Davalos, R.V. Irreversible Electroporation: Background, Theory, and Review of Recent Developments in Clinical Oncology. Bioelectricity 2019, 1, 214–234. [Google Scholar] [CrossRef]
- Liboff, A.R. Toward an Electromagnetic Paradigm for Biology and Medicine. J. Altern. Complement. Med. 2004, 10, 41–47. [Google Scholar] [CrossRef]
- Bradley, C.J.; Haines, D.E. Pulsed field ablation for pulmonary vein isolation in the treatment of atrial fibrillation. J. Cardiovasc. Electrophysiol. 2020, 31, 2136–2147. [Google Scholar] [CrossRef]
- Casas, O.; Bragos, R.; Riu, P.J.; Rosell, J.; Tresanchez, M.; Warren, M.; Rodriguez-Sinovas, A.; Carreño, A.; Cinca, J. In Vivo and In Situ ischemic tissue characterization using electrical impedance spectroscopy. Ann. N. Y. Acad. Sci. 1999, 873, 51–58. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, G.; Song, J.; Dai, M.; Xu, C.; Dong, X.; Fu, F. Ex-Vivo characterization of bioimpedance spectroscopy of normal, ischemic and hemorrhagic rabbit brain tissue at frequencies from 10 Hz to 1 MHz. Sensors 2016, 16, 1942. [Google Scholar] [CrossRef] [PubMed]
- Dunne, E.; Santorelli, A.; McGinley, B.; Halloran, M.O.; Leader, G.; Porter, E. EIT Image-Based Bladder State Classification for Nocturnal Enuresis. In Proceedings of the 19th International Conference on Biomedical Applications of Electrical Impedance Tomography, Edinburgh, UK, 11–13 June 2018. [Google Scholar]
- Egan, S.; Curley, G.P. What Is the Role of PEEP and Recruitment Maneuvers in ARDS? In Evidence-Based Practice of Critical Care; Elsevier: Amsterdam, The Netherlands, 2019; Volume 50. [Google Scholar]
- Amini, M.; Hisdal, J.; Kalvøy, H. Applications of bioimpedance measurement techniques in tissue engineering. J. Electr. Bioimpedance 2018, 9, 142–158. [Google Scholar] [CrossRef] [PubMed]
- Dielectric Properties of Body Tissues. Available online: http://niremf.ifac.cnr.it/tissprop/ (accessed on 1 August 2022).
- Dielectric Properties IT’IS Foundation. Available online: https://itis.swiss/virtual-population/tissue-properties/database/dielectric-properties/ (accessed on 1 August 2022).
- Gabriel, C.; Gabriel, S.; Corthout, E. The dielectric properties of biological tissues. Phys. Med. Biol. 1996, 41, 2231–2249. [Google Scholar] [CrossRef] [PubMed]
- Bohuslávek, Z. The measurement method of meat conductivity. Czech J. Food Sci. 2018, 36, 373–377. [Google Scholar] [CrossRef]
- Tsai, J.-Z.; Will, J.; Stelle, S.H.-V.; Cao, H.; Tungjitkusolmun, S.; Bin Choy, Y.; Haemmerich, D.; Vorperian, V.; Webster, J. Error analysis of tissue resistivity measurement. IEEE Trans. Biomed. Eng. 2002, 49, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Kuang, W.; Nelson, S.O. Low-frequency dielectric properties of biological tissues: A review with some new insights. Trans. Am. Soc. Agric. Eng. 1998, 41, 173–184. [Google Scholar] [CrossRef]
- Benchakroun, H.; Dunne, E.; O’Loughlin, D.; O’Halloran, M. Measurement of the Left Atrium Appendage Electrical Conductivity with a Tetrapolar Probe over 0.1 Hz to 100 kHz. In Proceedings of the 21st International Conference on Biomedical Applications of Electrical Tomography, Galway, Ireland, 14–16 June 2021; p. 303903. [Google Scholar]
- Ma, H.; Su, Y.; Nathan, A. Cell constant studies of bipolar and tetrapolar electrode systems for impedance measurement. Sens. Actuators B Chem. 2015, 221, 1264–1270. [Google Scholar] [CrossRef]
- La Gioia, A.; Porter, E.; Merunka, I.; Shahzad, A.; Salahuddin, S.; Jones, M.; O’Halloran, M. Open-Ended Coaxial Probe Technique for Dielectric Measurement of Biological Tissues: Challenges and Common Practices. Diagnostics 2018, 8, 40. [Google Scholar] [CrossRef]
- Ištuk, N.; Porter, E.; O’Loughlin, D.; McDermott, B.; Santorelli, A.; Abedi, S.; Joachimowicz, N.; Roussel, H.; O’Halloran, M. Dielectric properties of ovine heart at microwave frequencies. Diagnostics 2021, 11, 531. [Google Scholar] [CrossRef] [PubMed]
- Maenhout, G.; Santorelli, A.; Porter, E.; Ocket, I.; Markovic, T.; Nauwelaers, B. Effect of Dehydration on Dielectric Measurements of Biological Tissue as Function of Time. IEEE J. Electromagn. RF Microwaves Med. Biol. 2020, 4, 200–207. [Google Scholar] [CrossRef]
- Ištuk, N.; Benchakroun, H.; Elahi, A.; O’Halloran, M. The Effect of Contact Pressure on Ex-Vivo Measurements of the Conductivity of Liver. In Proceedings of the 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 27 March–1 April 2022. [Google Scholar]
- Istuk, N.; Benchakroun, H.; Dunne, E.; Halloran, M.O. Pressure Dependency of Conductivity Measurements: The Specific Case of the Lung. In Proceedings of the 21st International Conference on Biomedical Applications of Electrical Impedance Tomography (EIT 2021), Galway, Ireland, 14–16 June 2021; pp. 1–2. [Google Scholar]
- Saygi, S. Atrial fibrillation and the role of LAA in pathophysiology and clinical outcomes? J. Atr. Fibrillation 2012, 5, 153–160. [Google Scholar]
- Yarmush, M.L.; Golberg, A.; Serša, G.; Kotnik, T.; Miklavčič, D. Electroporation-based technologies for medicine: Principles, applications, and challenges. Annu. Rev. Biomed. Eng. 2014, 16, 295–320. [Google Scholar] [CrossRef] [PubMed]
- Al-Saady, N.M.; Obel, O.A.; Camm, A.J. Left atrial appendage: Structure, function, and role in thromboembolism. Heart 1999, 82, 547–554. [Google Scholar] [CrossRef]
- Wojtaszczyk, A.; Caluori, G.; Pešl, M.; Melajova, K.; Stárek, Z. Irreversible electroporation ablation for atrial fibrillation. J. Cardiovasc. Electrophysiol. 2018, 29, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Krijthe, B.P.; Kunst, A.; Benjamin, E.J.; Lip, G.Y.; Franco, O.H.; Hofman, A.; Witteman, J.C.; Stricker, B.H.; Heeringa, J. Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. Eur. Heart J. 2013, 34, 2746–2751. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.J.; Deshmukh, A.; Pant, S.; Singh, V.; Patel, N.; Arora, S.; Shah, N.; Chothani, A.; Savani, G.T.; Mehta, K.; et al. Contemporary trends of hospitalization for atrial fibrillation in the united states, 2000 through 2010 implications for healthcare planning. Circulation 2014, 129, 2371–2379. [Google Scholar] [CrossRef]
- Xu, J.; Luc, J.G.Y.; Phan, K. Atrial fibrillation: Review of current treatment strategies. J. Thorac. Dis. 2016, 8, E886–E900. [Google Scholar] [CrossRef]
- Wagstaff, P.; Buijs, M.; Bos, W.V.D.; de Bruin, D.; Zondervan, P.; de la Rosette, J.; Laguna, P. Irreversible electroporation: State of the art. Onco Targets Ther. 2016, 9, 2437–2446. [Google Scholar] [CrossRef]
- Doshi, R.N. The state of atrial fibrillation in 2020. J. Innov. Card. Rhythm Manag. 2021, 12, 4350–4353. [Google Scholar] [CrossRef]
- Castellví, Q.; Mercadal, B.; Ivorra, A. Handbook of Electroporation; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–20. [Google Scholar]
- Brandao, E.; Fulco, E.; Lenzi, A.; Tijs, E. Error estimation due to sample size effects of in situ surface impedance measurements. J. Acoust. Soc. Am. 2010, 127, 2001. [Google Scholar] [CrossRef]
- Peyman, A.; Gabriel, C. Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies. Phys. Med. Biol. 2001, 46, 1617–1629. [Google Scholar] [CrossRef] [PubMed]
- Maenhout, G.; Markovic, T.; Ocket, I.; Nauwelaers, B. Effect of open-ended coaxial probe-to-tissue contact pressure on dielectric measurements. Sensors 2020, 20, 2060. [Google Scholar] [CrossRef] [PubMed]
- Rossmann, C.; Haemmerich, D. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures. Crit. Rev. Biomed. Eng. 2014, 42, 467–492. [Google Scholar] [CrossRef] [PubMed]
- Porter, E.; La Gioia, A.; Salahuddin, S.; Decker, S.; Shahzad, A.; Elahi, M.A.; O’Halloran, M.; Beyan, O. Minimum information for dielectric measurements of biological tissues (MINDER): A framework for repeatable and reusable data. Int. J. RF Microw. Comput. Eng. 2017, 28, e21201. [Google Scholar] [CrossRef]
- Brom-Verheijden, G.J.A.M.; Goedbloed, M.H.; Zevenbergen, M.A.G. A Microfabricated 4-Electrode Conductivity Sensor with Enhanced Range. Proceedings 2018, 2, 797. [Google Scholar] [CrossRef]
- Kim, J.H.; Yoon, H.K.; Cho, S.H.; Kim, Y.S.; Lee, J.S. Four Electrode Resistivity Probe for Porosity Evaluation; ASTM International: West Conshohocken, PA, USA, 2011; Volume 34. [Google Scholar]
- Ishai, P.B.; Talary, M.S.; Caduff, A.; Levy, E.; Feldman, Y. Electrode polarization in dielectric measurements: A review. Meas. Sci. Technol. 2013, 24, 102001. [Google Scholar] [CrossRef]
- Hahn, G.M.; Kernahan, P.; Martinez, A.; Pounds, D.; Prionas, S.; Anderson, T.; Justice, G. Some Heat Transfer Problems Associated with Heating by Ultrasound, Microwaves, or Radio Frequency. Ann. N. Y. Acad. Sci. 1980, 335, 327–346. [Google Scholar] [CrossRef]
- Cinca, J.; Warren, M.; Carreño, A.; Tresànchez, M.; Armadans, L.; Gómez, P.; Soler-Soler, J. Changes in myocardial electrical impedance induced by coronary artery occlusion in pigs with and without preconditioning: Correlation with local ST-segment potential and ventricular arrhythmias. Circulation 1997, 96, 3079–3086. [Google Scholar] [CrossRef]
- Ellenby, M.I.; Small, K.W.; Wells, R.M.; Hoyt, D.J.; Lowe, J.E. On-line Detection of Reversible Myocardial Ischemic Injury by Measurement of Myocardial Electrical Impedance. Ann. Thorac. Surg. 1987, 44, 587–597. [Google Scholar] [CrossRef]
- Geddes, L.A.; Baker, L.E. The specific resistance of biological material-A compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng. 1967, 5, 271–293. [Google Scholar] [CrossRef]
- Schwan, H.P.; Kay, C.F. the Conductivity of Living Tissues. Ann. N. Y. Acad. Sci. 1957, 65, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Fallert, M.A.; Mirotznik, M.S.; Downing, S.W.; Savage, E.B.; Foster, K.R.; Josephson, M.E.; Bogen, D.K. Myocardial electrical impedance mapping of ischemic sheep hearts and healing aneurysms. Circulation 1993, 87, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.T.; Fleet, W.F.; Johnson, T.A.; Engle, C.L.; Cascio, W.E. The Ib phase of ventricular arrhythmias in ischemic in situ porcine heart is related to changes in cell-to-cell electrical coupling. Circulation 1995, 92, 3051–3060. [Google Scholar] [CrossRef] [PubMed]
- Pal, S. Mechanical Properties of Biological Materials. In Design of Artificial Human Joints & Organs; Springer: Boston, MA, USA, 2014; pp. 1–419. [Google Scholar]
- Lebedinskii, K.M. Pressure: Physiological Background. In Advanced Hemodynamic Monitoring: Basics and New Horizons; Kirov, M.Y., Kuzkov, V.V., Saugel, B., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 3–9. [Google Scholar]
- Ramanlal, R.; Gupta, V. Physiology, Vasodilation; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Lindinger, M.I.; Heigenhauser, G.J.F. Extracellular ion content of skeletal muscle measured by instrumental neutron activation analysis. J. Appl. Physiol. 1987, 63, 426–433. [Google Scholar] [CrossRef]
- Richardson, D.S.; Lichtman, J.W. Clarifying Tissue Clearing. Cell 2015, 162, 246–257. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, Z.; Wang, H.; Tu, X.M.; Feng, C. The p-value and model specification in statistics. Gen. Psychiatry 2019, 32, e10008. [Google Scholar] [CrossRef]
- Mishachev, N.; Shmyrin, A. Understanding P-value through experiments. In Proceedings of the 2021 1st International Conference on Technology Enhanced Learning in Higher Education (TELE), Lipetsk, Russia, 24–25 June 2021; pp. 129–132. [Google Scholar]
- Leem, S.; Park, T. An approximation method of extremely low p-values using permutation test. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 1759–1763. [Google Scholar]
- Lounsbury, M.; Crumley, E.T. New practice creation: An institutional perspective on innovation: Michael Lounsbury and Ellen T. Crumley. Organ. Stud. 2007, 28, 993–1012. [Google Scholar] [CrossRef]
- Tsai, J.-Z.; Will, J.; Stelle, S.H.-V.; Cao, H.; Tungjitkusolmun, S.; Bin Choy, Y.; Haemmerich, D.; Vorperian, V.; Webster, J. In-vivo measurement of swine myocardial resistivity. IEEE Trans. Biomed. Eng. 2002, 49, 472–483. [Google Scholar] [CrossRef]
Year | Species | Number | Ex Vivo | In Vivo | Force | |
---|---|---|---|---|---|---|
[54] | 1967 | Various | - | ✓ | ✓ | - |
[55] | 1980 | Dog | 7 | ✓ | ✓ | - |
[51] | 1980 | Dog | 4 | ✓ | Gentle pressure | |
[53] | 1987 | Dog | 12 | ✓ | - | |
[56] | 1993 | Sheep | 39 | ✓ | - | |
[57] | 1995 | Pig | 10 | ✓ | Electrodes were 4 to 6 mm deep | |
[22] | 1996 | Various | >30 | ✓ | Firm | |
[52] | 1997 | Pig | 26 | ✓ | - | |
[23] | 2002 | Pig | 8 | ✓ | - | |
[9] | 2009 | Pig | >3 | ✓ | - |
Tissue | Force Range | % Change in Electrical Properties |
---|---|---|
Cervix [5] | Soft to firm | −21.7% |
Lung [32] | 1 N to 10 N | +44.9% |
Liver [31] | 2.9 N to 29 N | −7% |
Liver [45] | 1 N to 10 N | −8% |
Experiment | y-Intercept [S/m] | x-Intercept [N] | Slope [S/(m × N)] | σ Change (%) |
---|---|---|---|---|
Forward | 0.239 | 0.187 | −6.45 × 10−3 | −21% |
Reverse | 0.185 | 0.187 | 2.64 × 10−4 | +1.3% |
Hyperhydration | 0.186 | 0.179 | −8.8 × 10−4 | −2.5% |
Frequencies | |||||
---|---|---|---|---|---|
10 Hz | 100 Hz | 1 kHz | 10 kHz | 100 kHz | |
p-value T1 | 0.23 × 10−3 | 0.08 × 10−3 | 0.088 × 10−3 | 0.13 × 10−3 | 0.25 × 10−3 |
p-value T2 | 0.59 × 10−3 | 0.19 × 10−3 | 0.24 × 10−3 | 0.34 × 10−3 | 0.48 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benchakroun, H.; Ištuk, N.; Dunne, E.; Elahi, M.A.; O’Halloran, T.; O’Halloran, M.; O’Loughlin, D. Probe Contact Force Monitoring during Conductivity Measurements of the Left Atrial Appendage to Support the Design of Novel Diagnostic and Therapeutic Procedures. Sensors 2022, 22, 7171. https://doi.org/10.3390/s22197171
Benchakroun H, Ištuk N, Dunne E, Elahi MA, O’Halloran T, O’Halloran M, O’Loughlin D. Probe Contact Force Monitoring during Conductivity Measurements of the Left Atrial Appendage to Support the Design of Novel Diagnostic and Therapeutic Procedures. Sensors. 2022; 22(19):7171. https://doi.org/10.3390/s22197171
Chicago/Turabian StyleBenchakroun, Hamza, Niko Ištuk, Eoghan Dunne, Muhammad Adnan Elahi, Tony O’Halloran, Martin O’Halloran, and Declan O’Loughlin. 2022. "Probe Contact Force Monitoring during Conductivity Measurements of the Left Atrial Appendage to Support the Design of Novel Diagnostic and Therapeutic Procedures" Sensors 22, no. 19: 7171. https://doi.org/10.3390/s22197171
APA StyleBenchakroun, H., Ištuk, N., Dunne, E., Elahi, M. A., O’Halloran, T., O’Halloran, M., & O’Loughlin, D. (2022). Probe Contact Force Monitoring during Conductivity Measurements of the Left Atrial Appendage to Support the Design of Novel Diagnostic and Therapeutic Procedures. Sensors, 22(19), 7171. https://doi.org/10.3390/s22197171