Development of a Mobile Sensory Device to Trace Treatment Conditions for Various Medical Plasma Source Devices
Abstract
:1. Introduction
1.1. Plasma Medicine
1.2. Medical Plasma Source Devices
1.3. Chronic Wound Treatment Using Plasma Sources
1.4. Present Work
- Automatic documentation of plasma treatment duration—precise detection and logging of the plasma usage for the kINPen® MED, plasma care®, and PlasmaDerm® Flex devices in comparison to manual detection and tracking to prevent user variability;
- Logging of ambient conditions—humidity and temperature;
- Graphical User Interface (GUI) for user-friendly operation;
- Plasma treatment report generation and export;
- Compact design for high mobility—as a module attachment for tablets or laptops, or as a standalone portable device based on a Raspberry Pi single-board computer.
2. Materials and Methods
2.1. Plasma Source Sound Analysis
2.2. Detection Strategy
Algorithm 1: Plasma sound detection and treatment time measurement. |
Data: Result: whiledo |
2.3. Hardware and GUI Overview
3. Results and Discussion
3.1. Experimental Validation of the Plasma Sound Detection System
3.2. Example Use Case of MSD
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAP | Cold Atmospheric Pressure Plasma |
UV | Ultraviolet |
ROS | Reactive Oxygen Species |
RNS | Reactive Nitrogen Species |
APPJ | Atmospheric Pressure Plasma Jet |
DBD | Dielectric Barrier Discharge |
MSD | Mobile Sensory Device |
GUI | Graphical User Interface |
FFT | Fast Fourier Transform |
OS | Operating System |
RTC | Real-Time Clock |
TPR | True Positive Rate |
TNR | True Negative Rate |
TP | True Positive |
TN | True Negative |
FP | False Positive |
FN | False Negative |
References
- Kogelschatz, U. Atmospheric-pressure plasma technology. Plasma Phys. Control Fusion 2004, 46, B63–B75. [Google Scholar] [CrossRef]
- von Woedtke, T.; Schmidt, A.; Bekeschus, S.; Wende, K.; Weltmann, K.D. Plasma Medicine: A Field of Applied Redox Biology. In Vivo 2019, 33, 1011–1026. [Google Scholar] [CrossRef]
- Weltmann, K.D.; von Woedtke, T. Plasma medicine—Current state of research and medical application. Plasma Phys. Control Fusion 2016, 59, 014031. [Google Scholar] [CrossRef]
- Bekeschus, S.; Schmidt, A.; Weltmann, K.D.; von Woedtke, T. The plasma jet kINPen–A powerful tool for wound healing. Clin. Plasma Med. 2016, 4, 19–28. [Google Scholar] [CrossRef]
- Bernhardt, T.; Semmler, M.; Schäfer, M.; Bekeschus, S.; Emmert, S.; Boeckmann, L. Plasma Medicine: Applications of Cold Atmospheric Pressure Plasma in Dermatology. Oxidative Med. Cell. Longev. 2019, 2019, 3873928. [Google Scholar] [CrossRef] [PubMed]
- Emmert, S.; Brehmer, F.; Hänßle, H.; Helmke, A.; Mertens, N.; Ahmed, R.; Simon, D.; Wandke, D.; Maus-Friedrichs, W.; Däschlein, G.; et al. Atmospheric pressure plasma in dermatology: Ulcus treatment and much more. Clin. Plasma Med. 2013, 1, 24–29. [Google Scholar] [CrossRef]
- Stoffels, E.; Sakiyama, Y.; Graves, D.B. Cold Atmospheric Plasma: Charged Species and Their Interactions with Cells and Tissues. IEEE Trans. Plasma Sci. 2008, 36, 1441–1457. [Google Scholar] [CrossRef]
- Stratmann, B.; Costea, T.C.; Nolte, C.; Hiller, J.; Schmidt, J.; Reindel, J.; Masur, K.; Motz, W.; Timm, J.; Kerner, W.; et al. Effect of Cold Atmospheric Plasma Therapy vs. Standard Therapy Placebo on Wound Healing in Patients With Diabetic Foot Ulcers: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e2010411. [Google Scholar] [CrossRef]
- Graves, D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys. 2012, 45, 263001. [Google Scholar] [CrossRef]
- Daeschlein, G.; Scholz, S.; Arnold, A.; von Podewils, S.; Haase, H.; Emmert, S.; von Woedtke, T.; Weltmann, K.D.; Jünger, M. In Vitro Susceptibility of Important Skin and Wound Pathogens against Low Temperature Atmospheric Pressure Plasma Jet (APPJ) and Dielectric Barrier Discharge Plasma (DBD). Plasma Process. Polym. 2012, 9, 380–389. [Google Scholar] [CrossRef]
- von Woedtke, T.; Reuter, S.; Masur, K.; Weltmann, K.D. Plasmas for medicine. Phys. Rep. 2013, 530, 291–320. [Google Scholar] [CrossRef]
- Metelmann, H.R.; Woedtke, T.V.; Weltmann, K.D. Comprehensive Clinical Plasma Medicine: Cold Physica Plasma for Medical Application; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Weltmann, K.D.; Kindel, E.; von Woedtke, T.; Hähnel, M.; Stieber, M.; Brandenburg, R. Atmospheric-pressure plasma sources: Prospective tools for plasma medicine. Pure Appl. Chem. 2010, 82, 1223–1237. [Google Scholar] [CrossRef]
- Winter, J.; Brandenburg, R.; Weltmann, K.D. Atmospheric pressure plasma jets: An overview of devices and new directions. Plasma Sources Sci. Technol. 2015, 24, 064001. [Google Scholar] [CrossRef]
- Reuter, S.; von Woedtke, T.; Weltmann, K.D. The kINPen—A review on physics and chemistry of the atmospheric pressure plasma jet and its applications. J. Phys. D Appl. Phys. 2018, 51, 233001. [Google Scholar] [CrossRef]
- Conrads, H.; Schmidt, M. Plasma generation and plasma sources. Plasma Sources Sci. Technol. 2000, 9, 441–454. [Google Scholar] [CrossRef]
- von Woedtke, T.; Emmert, S.; Metelmann, H.R.; Rupf, S.; Weltmann, K.D. Perspectives on cold atmospheric plasma (CAP) applications in medicine. Phys. Plasmas 2020, 27, 070601. [Google Scholar] [CrossRef]
- Mann, M.S.; Tiede, R.; Gavenis, K.; Daeschlein, G.; Bussiahn, R.; Weltmann, K.D.; Emmert, S.; von Woedtke, T.; Ahmed, R. Introduction to DIN-specification 91315 based on the characterization of the plasma jet kINPen® MED. Clin. Plasma Med. 2016, 4, 35–45. [Google Scholar] [CrossRef]
- Brehmer, F.; Haenssle, H.; Daeschlein, G.; Ahmed, R.; Pfeiffer, S.; Görlitz, A.; Simon, D.; Schön, M.; Wandke, D.; Emmert, S. Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm® VU-2010): Results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622). J. Eur. Acad. Dermatol. Venereol. 2015, 29, 148–155. [Google Scholar] [CrossRef]
- Ulrich, C.; Kluschke, F.; Patzelt, A.; Vandersee, S.; Czaika, V.; Richter, H.; Bob, A.; Hutten, J.V.; Painsi, C.; Hüge, R.; et al. Clinical use of cold atmospheric pressure argon plasma in chronic leg ulcers: A pilot study. J. Wound Care 2015, 24, 196–203. [Google Scholar] [CrossRef]
- Winter, J.; Wende, K.; Masur, K.; Iseni, S.; Dünnbier, M.; Hammer, M.U.; Tresp, H.; Weltmann, K.D.; Reuter, S. Feed gas humidity: A vital parameter affecting a cold atmospheric-pressure plasma jet and plasma-treated human skin cells. J. Phys. D Appl. Phys. 2013, 46, 295401. [Google Scholar] [CrossRef]
- Reuter, S.; Winter, J.; Iséni, S.; Schmidt-Bleker, A.; Dünnbier, M.; Masur, K.; Wende, K.; Weltmann, K. The Influence of Feed Gas Humidity Versus Ambient Humidity on Atmospheric Pressure Plasma Jet-Effluent Chemistry and Skin Cell Viability. IEEE Trans. Plasma Sci. 2015, 43, 3185–3192. [Google Scholar] [CrossRef]
- Law, V.; Chebbi, A.; O’Neill, F.; Dowling, D. Resonances and patterns within the kINPen-MED atmospheric pressure plasma jet. Chaotic Model. Simul. J. 2013, 1, 3–10. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- Emmert, S.; van Welzen, A.; Masur, K.; Gerling, T.; Bekeschus, S.; Eschenburg, C.; Wahl, P.; Bernhardt, T.; Schäfer, M.; Semmler, M.L.; et al. Kaltes Atmosphärendruckplasma zur Behandlung akuter und chronischer Wunden. Hautarzt 2020, 71, 855–862. [Google Scholar] [CrossRef]
- Ioannou, K.; Karampatzakis, D.; Amanatidis, P.; Aggelopoulos, V.; Karmiris, I. Low-Cost Automatic Weather Stations in the Internet of Things. Information 2021, 12, 146. [Google Scholar] [CrossRef]
- Cobain, K.; Novoselic, K.; Grohl, D. Smells Like Teen Spirit; DGC Records: Santa Monica, CA, USA, 1991. [Google Scholar]
- Hahn, V.; Grollmisch, D.; Bendt, H.; von Woedtke, T.; Nestler, B.; Weltmann, K.D.; Gerling, T. Concept for Improved Handling Ensures Effective Contactless Plasma Treatment of Patients with kINPen® MED. Appl. Sci. 2020, 10, 6133. [Google Scholar] [CrossRef]
- Gidon, D.; Pei, X.; Bonzanini, A.D.; Graves, D.B.; Mesbah, A. Machine Learning for Real-Time Diagnostics of Cold Atmospheric Plasma Sources. IEEE Trans. Radiat. Plasma Med. Sci. 2019, 3, 597–605. [Google Scholar] [CrossRef]
Device | ||
---|---|---|
kINPen® MED | 2550 | |
plasma care® | 4040 | |
PlasmaDerm® | 300 |
kINPen® MED | Plasma Care® | PlasmaDerm® Flex | ||||
---|---|---|---|---|---|---|
d [cm] | TPR | TNR | TPR | TNR | TPR | TNR |
5 | 1 | 1 | 0.966 | 1 | 0.995 | 1 |
10 | 1 | 1 | 0.834 | 1 | 0.987 | 0.995 |
15 | 1 | 1 | 0.679 | 1 | 0.952 | 1 |
20 | 1 | 1 | 0.617 | 1 | 0.910 | 1 |
25 | 0.979 | 1 | 0.564 | 1 | 0.779 | 1 |
30 | 0.521 | 1 | 0.542 | 1 | 0.642 | 1 |
100 | 0.243 | 1 | 0.381 | 1 | 0.504 | 1 |
200 | 0.033 | 1 | 0.375 | 1 | 0.329 | 1 |
Device | D | Error [%] | |||
---|---|---|---|---|---|
kINPen® MED | 3837 | 1440 | 1438.975 | 0.375 | 0.071 |
plasma care® | 3839 | 1440 | 1445.186 | 0.376 | 0.36 |
PlasmaDerm® Flex | 3732 | 1440 | 1436.561 | 0.384 | 0.238 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaerony Siffa, I.; Gerling, T.; Masur, K.; Eschenburg, C.; Starkowski, F.; Emmert, S. Development of a Mobile Sensory Device to Trace Treatment Conditions for Various Medical Plasma Source Devices. Sensors 2022, 22, 7242. https://doi.org/10.3390/s22197242
Chaerony Siffa I, Gerling T, Masur K, Eschenburg C, Starkowski F, Emmert S. Development of a Mobile Sensory Device to Trace Treatment Conditions for Various Medical Plasma Source Devices. Sensors. 2022; 22(19):7242. https://doi.org/10.3390/s22197242
Chicago/Turabian StyleChaerony Siffa, Ihda, Torsten Gerling, Kai Masur, Christian Eschenburg, Frank Starkowski, and Steffen Emmert. 2022. "Development of a Mobile Sensory Device to Trace Treatment Conditions for Various Medical Plasma Source Devices" Sensors 22, no. 19: 7242. https://doi.org/10.3390/s22197242
APA StyleChaerony Siffa, I., Gerling, T., Masur, K., Eschenburg, C., Starkowski, F., & Emmert, S. (2022). Development of a Mobile Sensory Device to Trace Treatment Conditions for Various Medical Plasma Source Devices. Sensors, 22(19), 7242. https://doi.org/10.3390/s22197242