Adaptive Load Forecasting Methodology Based on Generalized Additive Model with Automatic Variable Selection
Abstract
:1. Introduction
- Local load time series, produced by a smaller number of consumers, generally have more complex profiles, requiring advanced modeling techniques for achieving satisfactory forecasting accuracy.
- A higher level of automation and adaptation to data and over time is required for supporting local load forecasting functionality. The energy management in the smart grid implies operation with multiple energy sources, and the forecasting tool has to cope with many heterogeneous load time series and their changes, which requires versatile models and adaptive methodologies.
- The load forecasting functionality evolves to a more general predictive tool, and the interpretability of the implemented model has recently been emphasized as useful for, e.g., the exceptional events’ forecasts, creating tariffs, energy purchasing, etc.
- An approach is presented for constructing a dictionary of GAM terms for a specific forecasting application in the grid. The terms standardize the main load features determined by the level of aggregation, forecast horizon, and available data. As an example, the dictionary for eleven New York Independent System Operator (NYISO) zones, for day-ahead load forecasting functionality and available data for loads and temperatures, was constructed and evaluated. Differences between NYISO zones in population density, weather conditions, rural/urban balance, and average consumption support testing the generalizability of the approach.
- A dynamic, shrinkage-type term selection, embedded into the fast GAM estimation procedure, is developed. It automatically and continuously removes uninformative terms from the dictionary, serving as a mechanism for its dynamic adaptation to a specific load.
- The ability of the proposed methodology to describe all load time series from the NYISO dataset and the predictive performances for each zone are evaluated and improvements recommended.
- Promising results of 24-hour-ahead forecasts, for real working conditions, were obtained.
2. Methodology
2.1. GAM Structure
2.2. Automatic Variable Selection
2.3. Forecasting Procedure
3. Load Forecasting Model Construction
3.1. NYISO Data
3.2. Load GAM Terms’ Dictionary for NYISO Zones
4. Results and Discussion
4.1. Data Preparation
4.2. Residual Analysis
4.3. Some Comments on VS Results
4.4. Predictive Performances
4.5. Forecasting Results
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ertugrul, Ö.F.; Tekin, H.; Tekin, R. A novel regression method in forecasting short-term grid electricity load in buildings that were connected to the smart grid. Electr. Eng. 2017, 103, 717–728. [Google Scholar] [CrossRef]
- Nepal, B.; Yamaha, M.; Yokoe, A.; Yamaji, A.T. Electricity load forecasting using clustering and ARIMA model for energy management in buildings. Jpn. Archit. Rev. 2019, 3, 62–76. [Google Scholar] [CrossRef]
- Amana, S.; Frincu, M.; Chelmis, C.; Noor, M.U.; Simmhan, Y. Prediction Models for Dynamic Demand Response: Requirements, Challenges, and Insights. In Proceedings of the IEEE Conference on Smart Grid Communications, Miami, FL, USA, 2–5 November 2015. [Google Scholar] [CrossRef]
- Ceperic, E.; Ceperic, V.; Baric, A. A Strategy for Short-Term Load Forecasting by Support Vector Regression Machines. IEEE Trans. Power Syst. 2015, 28, 4356–4364. [Google Scholar] [CrossRef]
- Che, Y.; Xu, P.; Chu, Y.; Li, W.; Wu, Y.; Ni, L.; Bao, Y.; Wang, K. Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings. Appl. Energy 2017, 195, 659–670. [Google Scholar] [CrossRef]
- Lahouar, A.; Slama, J.B.H. Random Forests Model for One Day Ahead Load Forecasting. In Proceedings of the IREC 2015 The Sixth International Renewable Energy Congress, Sousse, Tunisia, 24–26 March 2015. [Google Scholar] [CrossRef]
- Son, M.; Moon, J.; Jung, S.; Hwang, E. A Short-Term Load Forecasting Scheme Based on Auto-Encoder and Random Forest. In Applied Physics, System Science and Computers III, Proceedings of the 3rd International Conference on Applied Physics, System Science and Computers (APSAC 2018), Dubrovnik, Croatia, 26–28 September 2018; Lecture Notes in Electrical Engineering; Springer: Cham, Switzerland, 2018; Volume 574. [Google Scholar] [CrossRef]
- Hippert, H.S.; Pedreira, C.E.; Souza, R.C. Neural networks for short-term load forecasting: A review and evaluation. IEEE Trans. Power Syst. 2001, 16, 44–55. [Google Scholar] [CrossRef]
- Ding, N.; Benoit, C.; Foggia, G.; Bésanger, Y.; Wurtz, F. Neural Network-Based Model Design for Short-Term Load Forecast in Distribution System. IEEE Trans. Power Syst. 2016, 31, 72–81. [Google Scholar] [CrossRef]
- Jetcheva, G.; Majidpour, M.; Chen, W.P. Neural Network Model Ensembles for Building Level Electricity Load Forecasts. Energy Build. 2014, 84, 214–233. [Google Scholar] [CrossRef]
- Khan, Z.A.; Jayaweera, D. Smart Meter Data Based Load Forecasting and Demand Side Management in Distribution Networks with Embedded PV Systems. IEEE Access 2019, 8, 2631–2644. [Google Scholar] [CrossRef]
- Ryi, S.; Noh, H.; Kim, H. Deep Neural Network Based Demand Side Short Term Load Forecasting. Energies 2021, 10, 3. [Google Scholar] [CrossRef]
- Muzaffar, S.; Afshari, A. Short-Term Load Forecasts Using LSTM Networks. Energy Procedia 2019, 158, 2922–2927. [Google Scholar] [CrossRef]
- Kong, W.; Dong, Z.Y.; Jia, Y.; Hill, D.J.; Xu, Y.; Zhang, Y. Short-Term Residential Load Forecasting based on LSTM Recurrent Neural Network. IEEE Trans. Smart Grid 2017, 10, 841–845. [Google Scholar] [CrossRef]
- López, M.; Valero, S.; Rodriguez, A.; Veiras, I.; Senabre, C. New online load forecasting system for the Spanish Transport System Operator. Electr. Power Syst. Res. 2018, 154, 401–412. [Google Scholar] [CrossRef]
- Mirowski, P.; Chen, S.; Kam Ho, T.; Yu, C.N. Demand Forecasting in Smart Grids. Bell Labs Tech. J. 2014, 4, 135–158. [Google Scholar] [CrossRef]
- Li, J.; Deng, D.; Zhao, J.; Cai, D.; Hu, W.; Zhang, M.; Huang, Q. A Novel Hybrid Short-Term Load Forecasting Method of Smart Grid Using MLR and LSTM Neural Network. IEEE Trans. Ind. Inform. 2021, 17, 2443–2452. [Google Scholar] [CrossRef]
- Andriopoulos, N.; Magklaras, A.; Birbas, A.; Paplexopoulos, A.; Valouxis, C.; Daskalaki, S.; Birbas, M.; Housos, E.; Papaioannou, G.P. Short Term Electric Load Forecasting Based on Data Transformation and Statistical Machine Learning. Appl. Sci. 2021, 11, 158. [Google Scholar] [CrossRef]
- Cai, M.; Pipattanasomporn, M.; Rahman, S. Day-ahead building-level load forecasts using deep learning vs. traditional time series techniques. Appl. Energy 2019, 236, 1078–1088. [Google Scholar] [CrossRef]
- Almalaq, A.; Zhang, J.J. Evolutionary Deep Learning-Based Energy Consumption Prediction for Buildings. IEEE Access 2019, 7, 1520–1531. [Google Scholar] [CrossRef]
- Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Pierrot, A.; Goude, Y. Short-term electricity load forecasting with generalized additive models. In Proceedings of the 16th International Conference on Intelligent System Applications to Power Systems ISAP, Hersonisos, Crete, Greece, 25–28 September 2011. [Google Scholar]
- Fan, S.; Hyndman, R.J. Short-term load forecasting based on a semi-parametric additive model. IEEE Trans. Power Syst. 2012, 27, 134–141. [Google Scholar] [CrossRef]
- Goude, Y.; Nedellec, N.; Kong, N. Local short and middle term electricity load forecasting with semi-parametric additive models. IEEE Trans. Smart Grids 2012, 1, 440–446. [Google Scholar] [CrossRef]
- Ploennigs, J.; Chen, B.; Palmes, P.; Lloyd, R. e2-Diagnoser: A System for Monitoring, Forecasting and Diagnosing Energy Usage. In Proceedings of the 2014 IEEE International Conference on Data Mining Workshop, Shenzhen, China, 14 December 2014. [Google Scholar] [CrossRef]
- Pompey, P.; Bondu, A.; Goude, Y.; Sinn, M. Massive-Scale Simulation of Electrical Load in Smart Grids Using Generalized Additive Models. In Modeling and Stochastic Learning for Forecasting in High Dimensions; Springer: Cham, Switzerland; New York, NY, USA, 2015; pp. 193–212. [Google Scholar] [CrossRef]
- Obst, D.; de Vilmarest, J.; Goude, Y. Adaptive Methods for Short-Term Electricity Load Forecasting during COVID-19 Lockdown in France. arXiv 2020, arXiv:2009.06527v1. [Google Scholar] [CrossRef]
- Wood, S.; Goude, Y.; Shaw, S. Generalized additive models for large data sets. J. R. Stat. Soc. Appl. Stat. 2015, 64, 139–155. [Google Scholar] [CrossRef]
- Wood, S.N.; Li, Z.; Shaddick, G.; Augustin, N.H. Generalized Additive Models for Gigadata: Modeling the U.K. Black Smoke Network Daily Data. JOurnal Am. Stat. Assoc. 2017, 112, 1199–1210. [Google Scholar] [CrossRef]
- Thouvenot, V.; Pichavant, A.; Goude, Y.; Antoniadis, A.; Poggi, J.M. Electricity Forecasting Using Multi-Stage Estimators of Nonlinear Additive Models. IEEE Trans. Power Syst. 2016, 31, 3665–3673. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, H.H. Component Selection and Smoothing in Multivariate Nonparametric Regression. Ann. Stat. 2006, 34, 2272–2297. [Google Scholar] [CrossRef] [Green Version]
- Ravikumar, P.; Lafferty, J.; Liu, H.; Wasserman, L. Sparse Additive Model. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2009, 71, 1009–1030. [Google Scholar] [CrossRef]
- Chouldechova, A.; Hastie, T. Generalized Additive Model Selection. arXiv 2015, arXiv:1506.03850. [Google Scholar]
- Marra, G.; Wood, S. Practical variable selection for generalized additive models. Comput. Stat. Data Anal. 2011, 55, 2372–2387. [Google Scholar] [CrossRef]
- NYISO. Load Data. 2019. Available online: https://www.nyiso.com/load-data (accessed on 23 June 2022).
- Maia-Silva, D.; Kumar, R.; Nateghi, R. The critical role of humidity in modeling summer electricity demand across the United States. Nat. Commun. 2020, 11, 1686. [Google Scholar] [CrossRef]
- Lopez, M.; Valero, S.; Sans, C.; Senabre, C. Use of Available Daylight to Improve Short-Term Load Forecasting Accuracy. Energies 2021, 14, 95. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Thiruvengadam, R.; Karrthikeyaa, A.S.S.; Vijayaraghavan, V. A Two-Fold Machine Learning Approach for Efficient Day-Ahead Load Prediction at Hourly Granularity for NYC. In Advances in Information and Communication. FICC 2019. Lecture Notes in Networks and Systems; Arai, K., Bhatia, R., Eds.; Springer: Cham, Switzerland, 2019; Volume 70. [Google Scholar] [CrossRef]
- Henselmeyer, S.; Grzegorzek, M. Short-Term Load Forecasting Using an Attended Sequential Encoder-Stacked Decoder Model with Online Training. Appl. Sci. 2021, 11, 4927. [Google Scholar] [CrossRef]
Zone | Zone ID | Average Load (MW) | Population [×] |
---|---|---|---|
West | WEST | 1790 | 1532 |
Genese | GENESE | 1140 | 1003 |
Central | CENTRL | 1850 | 1384 |
Capital | CAPITL | 1330 | 1215 |
Millwood | MILLWD | 330 | 190 |
Dunwoodie | DUNWD | 670 | 760 |
New York City | N.Y.C. | 6120 | 8186 |
Long Island | LONGIL | 2540 | 2835 |
Mohawk Valley | MHKVL | 910 | 891 |
Hudson Valley | HUDVL | 1150 | 1372 |
North | NORTH | 540 | 82 |
Model Term | Feature | |
---|---|---|
0 | the load at time instance t, in a day d | |
1 | TPRS spline for long-term trend | |
2 | cyclic CRS for an annual cycle with 12 knots | |
3 | cyclic CRS with 7 knots | |
4 | week and year smooth interaction term | |
5 | daylight saving/yearly cycle interaction | |
6 | daylight saving/weekly cycle interaction | |
7–12 | TPRS spline for each combination of temperature type, x, and day, y, where x is the maximal/minimal temperature, for y, the current and previous two days, d, , | |
13–15 | maximal/minimal temperature interaction term for y current and previous two days, d, , | |
16–21 | week/maximal temperature interaction term for x, the maximal/minimal temperature, for y, the current and previous two days, d, , | |
22–27 | year/maximal temperature interaction term for x, the maximal/minimal temperature, for y, the current and previous two days, d, , | |
28 | categorical variable for day type (realized as a factor variable) | |
29 | day type/previous day load interaction | |
30–35 | TPRS splines for the same time, previous −2 to −7 days | |
36–37 | TPRS splines for the two previous time instances |
Zone | MAPE (%) | MAE (MW) |
---|---|---|
WEST | 0.50 | 10.3 |
GENESE | 0.55 | 6.43 |
CENTRL | 0.62 | 12.1 |
CAPITL | 0.65 | 8.5 |
MILLWD | 1.31 | 4.5 |
DUNWD | 0.71 | 6.2 |
N.Y.C. | 0.31 | 21.7 |
LONGIL | 0.52 | 13.7 |
NORTH | 0.78 | 9.0 |
HUDVL | 0.98 | 9.4 |
MHKVL | 0.52 | 4.6 |
Zone | f/r | Winter | Spring | Summer | Fall | Averaged |
---|---|---|---|---|---|---|
WEST | f | 1.22 (22.87) | 1.50 (27.29) | 2.31 (49.87) | 1.34 (25.42) | 1.59 (31.36) |
r | 1.18 (22.28) | 1.34 (23.41) | 2.02 (42.55) | 1.31 (24.90) | 1.46 (28.29) | |
GENESE | f | 1.40 (20.05) | 1.46 (16.35) | 2.06 (30.87) | 1.15 (12.53) | 1.52 (19.95) |
r | 1.32 (19.01) | 1.34 (14.71) | 1.81 (26.43) | 1.07 (12.14) | 1.39 (18.07) | |
CENTRL | f | 1.42 (28.32) | 1.28 (22.28) | 1.93 (43.91) | 1.46 (28.61) | 1.52 (30.78) |
r | 1.32 (25.71) | 1.20 (21.21) | 1.85 (42.81) | 1.42 (27.63) | 1.44 (29.34) | |
CAPITL | f | 1.53 (20.84) | 1.69 (23.82) | 2.01 (35.79) | 1.62 (21.92) | 1.71 (25.59) |
r | 1.43 (19.38) | 1.63 (20.62) | 1.94 (34.76) | 1.55 (20.81) | 1.64 (23.89) | |
MILLWD | f | 2.75 (9.36) | 2.92 (9,99) | 2.97 (15.58) | 2.94 (9.33) | 2.89 (11.06) |
r | 2.35 (7.91) | 2.73 (8.29) | 2.88 (14.89) | 2.73 (9.29) | 2.67 (10.01) | |
DUNWD | f | 2.01 (14.51) | 2.00 (13.58) | 3.12 (36.87) | 1.51 (10.32) | 2.16 (18.82) |
r | 1.80 (12.26) | 1.76 (12.37) | 2.81 (36,87) | 1.36 (9.14) | 1.93 (17.66) | |
NYC | f | 1.10 (64.60) | 1.31 (74.62) | 2.42 (217.54) | 0.83 (54.71) | 1.42 (102.87) |
r | 0.90 (52.82) | 1.03 (57.73) | 2.06 (193.29) | 0.79 (49.52) | 1.20 (88.34) | |
LONGIL | f | 1.77 (45,94) | 1.72 (40.22) | 2.72 (112.38) | 1.79 (41.62) | 2.00 (60.04) |
r | 1.73 (45.73) | 1.61 (36.01) | 2.67 (108.23) | 1.55 (35.92) | 1.89 (56.47) | |
NORTH | f | 1.17 (9.53) | 1.01 (7.81) | 1.15 (8.83) | 1.51 (11.83) | 1.21 (9.50) |
r | 0.98 (8.00) | 0.92 (7.06) | 1.09 (8.33) | 1.38 (10.64) | 1.09 (8.51) | |
HUDVL | f | 1.65 (18.77) | 1.68 (17.91) | 2.82 (47.90) | 1.64 (18.3) | 1.88 (25.72) |
r | 1.60 (18.10) | 1.53 (15.82) | 2.69 (42.05) | 1.42 (15.7) | 1.81 (22.92) | |
MHKVL | f | 1.82 (20.21) | 2.28 (25.41) | 2.68 (30.67) | 2.06 (19.54) | 2.21 (23.96) |
r | 1.76 (19.03) | 2.02(20.12) | 2.63 (29.60) | 2.00 (18.85) | 2.01 (21.90) |
Zone | In/Out | 1 January | Easter Sunday | Memorial | Independence | Columbus |
---|---|---|---|---|---|---|
WEST | in | 2.91 | 0.94 | 2.23 | 2.72 | 2.03 |
out | 7.94 | 5.72 | 10.50 | 8.30 | 2.15 | |
GENESE | in | 3.52 | 1.51 | 2.15 | 3.82 | 1.92 |
out | 11.59 | 8.72 | 12.50 | 10.10 | 2.14 | |
CENTRL | in | 3.62 | 1.58 | 1.74 | 3.34 | 1.24 |
out | 5.30 | 6.64 | 8.82 | 7.23 | 1.38 | |
CAPITL | in | 4.92 | 2.24 | 3.25 | 3.13 | 1.52 |
out | 10.12 | 3.82 | 11.81 | 7.94 | 1.77 | |
MILLWD | in | 2.54 | 3.23 | 3.92 | 2.53 | 2.22 |
out | 10.81 | 3.53 | 11.26 | 3.72 | 2.27 | |
DUNWD | in | 3.72 | 2.53 | 2.10 | 2.31 | 2.43 |
out | 10.12 | 2.95 | 9.74 | 9.34 | 2.55 | |
N.Y.C. | in | 3.40 | 1.33 | 1.32 | 2.01 | 3.21 |
out | 11.23 | 5.97 | 9.90 | 10.80 | 3.39 | |
LONGIL | in | 2.84 | 3.17 | 3.41 | 3.32 | 3.50 |
out | 9.16 | 3.95 | 10.92 | 5.27 | 3.67 | |
NORTH | in | 1.72 | 0.88 | 1.24 | 0.92 | 0.91 |
out | 1.83 | 1.84 | 2.63 | 2.32 | 1.01 | |
HUDVL | in | 3.72 | 1.13 | 4.62 | 1.53 | 1.63 |
out | 8.73 | 5.94 | 7.81 | 3.35 | 1.73 | |
MHKVL | in | 3.21 | 2.10 | 3.26 | 1.92 | 2.21 |
out | 9.97 | 4.72 | 14.62 | 4.56 | 2.34 |
Zone | Without DST | With DST |
---|---|---|
WEST | 1.58 | 1.28 |
GENESE | 1.84 | 1.65 |
CENTRL | 2.32 | 2.21 |
CAPITL | 1.94 | 1.66 |
MILLWD | 4.50 | 4.23 |
DUNWD | 2.05 | 1.78 |
N.Y.C. | 1.97 | 0.85 |
LONGIL | 1.92 | 1.58 |
NORTH | 2.16 | 1.38 |
HUDVL | 2.68 | 2.64 |
MHKVL | 1.88 | 1.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krstonijević, S. Adaptive Load Forecasting Methodology Based on Generalized Additive Model with Automatic Variable Selection. Sensors 2022, 22, 7247. https://doi.org/10.3390/s22197247
Krstonijević S. Adaptive Load Forecasting Methodology Based on Generalized Additive Model with Automatic Variable Selection. Sensors. 2022; 22(19):7247. https://doi.org/10.3390/s22197247
Chicago/Turabian StyleKrstonijević, Sovjetka. 2022. "Adaptive Load Forecasting Methodology Based on Generalized Additive Model with Automatic Variable Selection" Sensors 22, no. 19: 7247. https://doi.org/10.3390/s22197247
APA StyleKrstonijević, S. (2022). Adaptive Load Forecasting Methodology Based on Generalized Additive Model with Automatic Variable Selection. Sensors, 22(19), 7247. https://doi.org/10.3390/s22197247