Security Performance Analysis of LEO Satellite Constellation Networks under DDoS Attack
Abstract
:1. Introduction
2. Materials and Methods
2.1. Space-Time Graph Model
2.2. Distributed Denial of Service (DDoS) Attacks
- Generate a lot of useless data, blocking satellite communication and making the attacked host unable to respond to user requests normally;
- Utilize the flaws in the network protocol of the attacked host to send repeated service requests repeatedly so that the attacked host cannot process the normal requests of users in time;
- Utilize the flaws of the attacked host’s Internet to repeatedly send malformed attack data, thus occupying most of the host’s memory and crashing the host.
- ICMP Flood: This attack sends a large number of ping packets to the victim in a short period of time and uses the method of exhausting the victim’s resources to achieve the purpose of paralyzing the server so that it cannot continue to work normally;
- TCP SYN Flood: This attack captures the defect of the TCP three-way handshake and four-way teardown protocol and initiates many false SYN connection request packets to the target host, which continuously occupies the resources of the target host and eventually causes the network to be paralyzed;
- UDP Flood: This attack sends a large number of UDP packets to the victim in a short period of time, making the victim overloaded and unable to undertake normal transmission work, exhausting the resources of the target host;
- HTTP Flood: This attack floods normal services in the network by sending malformed HTTP protocol packets, which can cause more damage without high rates.
3. Platform Design and Simulation
3.1. Simulation Tools
3.2. Orbit Parameter Settings
3.3. Interface Configuration
3.4. DDoS Attack Model Parameter Configuration
4. Result and Discussion
4.1. Two-Satellite-Key-Node Attack
4.2. Multi-Satellite-Key-Node Attack
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- An, K.; Lin, M.; Ouyang, J.; Zhu, W.P. Secure transmission in cognitive satellite terrestrial networks. IEEE J. Sel. Areas Commun. 2016, 34, 3025–3037. [Google Scholar] [CrossRef]
- An, K.; Liang, T.; Zheng, G.; Yan, X.; Li, Y.; Chatzinotas, S. Performance limits of cognitive-uplink FSS and terrestrial FS for Ka-band. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 2604–2611. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS aided hybrid satellite-terrestrial relay networks: Joint beamforming design and optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar] [CrossRef]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. SLNR-based secure energy efficient beamforming in multibeam satellite systems. IEEE Trans. Aerosp. Electron. Syst. 2022, 1–4. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; de Cola, T.; Wang, J.B.; Zhu, W.P.; Cheng, J. Supporting IoT with rate-splitting multiple access in satellite and aerial-integrated networks. IEEE Internet Things J. 2021, 8, 11123–11134. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Wang, J.B.; de Cola, T.; Wang, J. Joint beamforming and power allocation for satellite-terrestrial integrated networks with non-orthogonal multiple access. IEEE J. Sel. Top. Signal Process. 2019, 13, 657–670. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Champagne, B.; Zhu, W.P.; Al-Dhahir, N. Secure and energy efficient transmission for RSMA-based cognitive satellite-terrestrial networks. IEEE Wirel. Commun. Lett. 2021, 10, 251–255. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Champagne, B.; Zhu, W.P.; Al-Dhahir, N. Secure beamforming for cognitive satellite terrestrial networks with unknown eavesdroppers. IEEE Syst. J. 2021, 15, 2186–2189. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Wang, J.B.; Huang, Y.; Zhu, W.P. Robust secure beamforming for 5G cellular networks coexisting with satellite networks. IEEE J. Sel. Areas Commun. 2018, 36, 932–945. [Google Scholar] [CrossRef]
- Zhu, Q.Y.; Tao, H.C.; Cao, Y.H.; Li, X.H. Laser Inter-Satellite Link Visibility and Topology Optimization for Mega Constellation. Electronics 2022, 11, 2232. [Google Scholar] [CrossRef]
- Boley, A.C.; Byers, M. Satellite mega-constellations create risks in Low Earth Orbit, the atmosphere and on Earth. Sci. Rep. 2021, 11, 10642. [Google Scholar] [CrossRef] [PubMed]
- Inigo, D.P.; Cameron, B.G.; Crawley, E.F. A technical comparison of three low earth orbit satellite constellation systems to provide global broadband. Acta Astronaut. 2019, 159, 123–135. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, S.Y.; Li, F.H.; Wu, H.; Zhao, H.Q.; Wang, G. User random access authentication protocol for low earth orbit satellite networks. J. Tsinghua Univ. (Sci. Technol.) 2019, 59, 1–8. [Google Scholar] [CrossRef]
- Wei, D.B.; Qin, Y.F.; Kong, Z.X. The important node assessment method of satellite network based on near the center. In Proceedings of the 2016 IEEE International Conference on Network and Information Systems for Computers (ICNISC), Wuhan, China, 15–17 April 2016; pp. 103–107. Available online: https://ieeexplore.ieee.org/document/7945959 (accessed on 20 July 2022).
- Wang, S.Q.; Zhao, Y.J.; Xie, H. Pkn: Improving survivability of leo satellite network through protecting key nodes. In Proceedings of the 15th International Conference on Emerging Networking EXperiments and Technologies, Orlando, FL, USA, 9 December 2019; pp. 7–8. [Google Scholar] [CrossRef]
- Xu, R.; Di, X.Q.; He, X.W.; Qi, H. Evaluation method of node importance in temporal satellite networks based on time slot correlation. J. Wireless Com. Network. 2021, 188, 188. [Google Scholar] [CrossRef]
- Tu, Z.; Zhou, H.C.; Li, K.; Li, M.; Tian, A.T. An energy-efficient topology design and DDoS attacks mitigation for green software-defined satellite network. IEEE Access. 2020, 8, 211434–211450. Available online: https://ieeexplore.ieee.org/document/9268145 (accessed on 22 July 2022). [CrossRef]
- Di, A.O.; Ruisheng, S.; Lan, L.; Yueming, L. On the large-scale traffic DDoS threat of space backbone network. In Proceedings of the 2019 IEEE 5th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), Washington, DC, USA, 27–29 May 2019; pp. 192–194. Available online: https://ieeexplore.ieee.org/document/8819476 (accessed on 22 July 2022).
- Li, C.J.; Sun, X.C.; Zhang, Z. Effective methods and performance analysis of a satellite network security mechanism based on blockchain technology. IEEE Access. 2021, 9, 113558–113565. Available online: https://ieeexplore.ieee.org/document/9514547 (accessed on 23 July 2022). [CrossRef]
- Usman, M.; Qaraqe, M.; Asghar, M.R.; Ansari, I.S. Mitigating distributed denial of service attacks in satellite networks. Trans. Emerg. Telecommun. Technol. 2020, 31, e3936. [Google Scholar] [CrossRef]
- Giuliari, G.; Ciussani, T.; Perrig, A.; Singla, A.; Zurich, E. ICARUS: Attacking low earth orbit satellite networks. In Proceedings of the 2021 USENIX Annual Technical Conference (USENIX ATC 21), Virtual, 14–16 July 2021; pp. 317–331. [Google Scholar]
- Li, Y.J.; Li, H.W.; Lv, Z.Z.; Yao, X.K.; Li, Q.R.; Wu, J.P. Deterrence of Intelligent DDoS via Multi-Hop Traffic Divergence. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual, 13 November 2021; pp. 923–939. [Google Scholar] [CrossRef]
- Li, F.; Chen, S.Y.; Huang, M.S.; Yin, Z.Y.; Zhang, C.; Wang, Y. Reliable topology design in time-evolving delay-tolerant networks with unreliable links. IEEE Trans. Mobile Comput. 2014, 14, 1301–1314. Available online: https://ieeexplore.ieee.org/document/6871429 (accessed on 25 July 2022). [CrossRef] [Green Version]
- Huang, M.S.; Chen, S.Y.; Li, F.; Wang, Y. Topology design in time-evolving delay-tolerant networks with unreliable links. In Proceedings of the 2012 IEEE Global Communications Conference (GLOBECOM), Anaheim, CA, USA, 3–7 December 2012; pp. 5296–5301. Available online: https://ieeexplore.ieee.org/document/6503962 (accessed on 26 July 2022).
- Guo, W.; Xu, J.; Pei, Y.K.; Yin, L.G.; Jiang, C.X.; Ge, N. A Distributed Collaborative Entrance Defense Framework against DDoS Attacks on Satellite Internet. IEEE Internet Things J. 2022, 9, 15497–15510. Available online: https://ieeexplore.ieee.org/document/9777763/ (accessed on 26 July 2022). [CrossRef]
Parameter | Value |
---|---|
Orbit type | Circular |
Altitude | 335 km |
Inclination | 42.0 deg |
RAAN | 0 deg |
Number of tracks | 10 |
Number of satellites | 207 |
Regional area | 8544 × 4589 km2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, Y.; Hu, Y.; Lin, Z.; Zhai, Y.; Wang, L.; Zhao, Q.; Wen, K.; Kang, L. Security Performance Analysis of LEO Satellite Constellation Networks under DDoS Attack. Sensors 2022, 22, 7286. https://doi.org/10.3390/s22197286
Zhang Y, Wang Y, Hu Y, Lin Z, Zhai Y, Wang L, Zhao Q, Wen K, Kang L. Security Performance Analysis of LEO Satellite Constellation Networks under DDoS Attack. Sensors. 2022; 22(19):7286. https://doi.org/10.3390/s22197286
Chicago/Turabian StyleZhang, Yan, Yong Wang, Yihua Hu, Zhi Lin, Yadi Zhai, Lei Wang, Qingsong Zhao, Kang Wen, and Linshuang Kang. 2022. "Security Performance Analysis of LEO Satellite Constellation Networks under DDoS Attack" Sensors 22, no. 19: 7286. https://doi.org/10.3390/s22197286
APA StyleZhang, Y., Wang, Y., Hu, Y., Lin, Z., Zhai, Y., Wang, L., Zhao, Q., Wen, K., & Kang, L. (2022). Security Performance Analysis of LEO Satellite Constellation Networks under DDoS Attack. Sensors, 22(19), 7286. https://doi.org/10.3390/s22197286