Design of EM Sensor for Non-Contact Detection of Defective Wire Harness in Conveyor System
Abstract
:1. Introduction
2. EM Sensor for Non-Contact Detection of Defective Wire Harness
3. Measured Results for Real Wire Harness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jang, C.; Park, J.; Lee, H.; Yun, G.; Yook, J. Temperature-corrected fluidic glucose sensor based on microwave resonator. Sensors 2018, 18, 3850. [Google Scholar] [CrossRef] [PubMed]
- Varshney, A.K.; Pathak, N.P.; Sircar, D. Non-destructive detection of coconut quality using RF sensor. Electron. Lett. 2020, 56, 975–977. [Google Scholar] [CrossRef]
- Blakey, R.; Nakouti, I.; Korostynska, O.; Mason, A.; Al-Shamma’a, A. Real-Time Monitoring of Pseudomonas Aeruginosa Concentration Using a Novel Electromagnetic Sensors Microfluidic Cell Structure. IEEE Trans. Biomed. Eng. 2013, 60, 3291–3297. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, H.; Hong, Y.; Lee, H. 40 GHz RF biosensor based on microwave coplanar waveguide transmission line for cancer cells (HepG2) dielectric characterization. Biosens. Bioelectron. 2014, 61, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Camli, B.; Kusakci, E.; Lafci, B.; Salman, S.; Torun, H.; Yalcinkaya, A.D. Cost-effective, microstrip antenna driven ring resonator microwave biosensor for biospecific detection of glucose. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 404–409. [Google Scholar] [CrossRef]
- Choi, H.; Naylon, J.; Luzio, S.; Beutler, J.; Birchall, J.; Martin, C.; Porch, A. Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor. IEEE Trans. Microw. Theory Tech. 2015, 63, 3016–3025. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Adhikari, K.K.; Dhakal, R.; Chuluunbaatar, Z.; Wang, C.; Kim, E. Rapid, sensitive, and reusable detection of glucose by a robust radiofrequency integrated passive device biosensor chip. Sci. Rep. 2015, 5, 7807. [Google Scholar] [CrossRef] [PubMed]
- Buonanno, G.; Brancaccio, A.; Costanzo, S.; Solimene, R. Response sharpening of resonant sensors for potential applications in blood glucose monitoring. IEEE J. Electromagn. RF Microw. Med. Biol. 2022, 6, 287–293. [Google Scholar] [CrossRef]
- Wadhwani, K.; Hussaini, S.; Mazumder, A.; Syed, A. Solvent-based optimization of CSRR and IDC RF bio-sensors. IEEE Sens. J. 2022, 22, 5651–5661. [Google Scholar] [CrossRef]
- Mondal, S.; Chu, Y.; Cuddihy, M.; Attaran, A.; Ghannam, M.Y.; Chahal, P. Hybrid RFID based batteryless seat sensor with discontinuous RF transmission. IEEE Trans. Veh. Technol. 2022, 71, 2305–2318. [Google Scholar] [CrossRef]
- Banerjee, A.; Kumar, A.; Tiwari, N.K.; Akhtar, M.J. Design of bridge type C-band planar RF sensor for detection of solute concentration level in water. IEEE Sens. J. 2021, 21, 22670–22678. [Google Scholar] [CrossRef]
- Chen, W.S.; Mansour, R.R. Miniature gas sensor and sensor array with single- and dual-mode RF dielectric resonators. IEEE Trans. Microw. Theory Tech. 2018, 66, 3697–3704. [Google Scholar] [CrossRef]
- Khalid, N.; Mirzavand, R.; Saghlatoon, H.; Honari, M.M.; Mousavi, P. A three-port zero-power RFID sensor architecture for IoT applications. IEEE Access 2020, 8, 66888–66897. [Google Scholar] [CrossRef]
- Zhou, J.; Sharma, P.; Hui, X.; Kan, E.C. A wireless wearable RF sensor for brumation study of chelonians. IEEE J. Electromagn. RF Microw. Med. Biol. 2021, 5, 17–24. [Google Scholar] [CrossRef]
- Cheng, H.; Ebadi, S.; Gong, X. A low-profile wireless passive temperature sensor using resonator/antenna integration up to 1000 °C. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 369–372. [Google Scholar] [CrossRef]
- Paul, S.; Akhtar, M.J. Novel metasurface lens-based RF sensor structure for SAR microwave imaging of layered media. IEEE Sens. J. 2021, 21, 17827–17837. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, H.; Park, J.-H.; Kim, M.; Lee, J.-G. Design of EM Sensor for Non-Contact Detection of Defective Wire Harness in Conveyor System. Sensors 2022, 22, 7350. https://doi.org/10.3390/s22197350
Zeng H, Park J-H, Kim M, Lee J-G. Design of EM Sensor for Non-Contact Detection of Defective Wire Harness in Conveyor System. Sensors. 2022; 22(19):7350. https://doi.org/10.3390/s22197350
Chicago/Turabian StyleZeng, Hailin, Jeong-Hyun Park, Mincheol Kim, and Jae-Gon Lee. 2022. "Design of EM Sensor for Non-Contact Detection of Defective Wire Harness in Conveyor System" Sensors 22, no. 19: 7350. https://doi.org/10.3390/s22197350
APA StyleZeng, H., Park, J. -H., Kim, M., & Lee, J. -G. (2022). Design of EM Sensor for Non-Contact Detection of Defective Wire Harness in Conveyor System. Sensors, 22(19), 7350. https://doi.org/10.3390/s22197350