An Improved Frequency Domain Guided Thermal Imager Strips Removal Algorithm Based on LRSID
Abstract
:1. Introduction
- (1)
- Filtering algorithm
- (2)
- Low rank model algorithm
- (3)
- Deep learning correlation algorithm
2. Materials and Methods
- (1)
- Preprocessing algorithm of obvious bright stripes
Algorithm 1: preprocessing obviously bright and dark fringe |
Input: SDGSAT-1’s thermal infrared raw image raw_img |
1: Set the threshold parameters th1, th2 |
2: Set the vector parameter S of obvious vertical stripe |
3: Set the count parameter ct = 0 |
4: Calculate the column number N of the raw_img |
5: for i = 2: N − 1 |
6: Calculate the mean value X(i − 1) of the column i − 1 |
7: Calculate the mean value X(i) of the column i |
8: Calculate the mean value X(i + 1) of the column i + 1 |
9: if X(i) − X(I − 1) > th1 and X(i) − X(i + 1) > th1 |
10: ct = ct + 1, S(ct) = i |
11: if X(i − 1) − X(i) > th1 and X(i + 1) − X(i) > th1 |
12: ct = ct + 1, S(ct) = i |
13: end |
14: Set the preprocessed image pre_img = raw_img |
15: for j = 1: ct |
16: if S(j) + 1 is belong to S |
17: pre_img(:, S(j)) = pre_img(:, S(j) − 1) |
18: elseif S(j) − 1 is belong to S |
19: pre_img(:, S(j)) = pre_img(:, S(j) + 1) |
20: else |
21: pre_img(:, S(j)) = pre_img(:, S(j) + 1) |
22: end |
Output: SDGSAT-1’s thermal infrared preprocessing image pre_img |
- (2)
- LRSID + frequency domain guidance
Algorithm 2: Striping algorithm based on LRSID and frequency domain guidance |
Input: SDGSAT-1’s thermal infrared preprocessing image pre_img |
1: Set the parameters opts of LRSID (the lagranian parameters, the regularization parameters and the number of iterations) |
2: Set the quantization bits Q of image |
3: Normalize the image pre_img/2Q |
4: Implement the LRSID algorithm, obtain the initial destripe image destripe_img1 |
5: Restore to the raw scale destripe_img1 = destripe_img1*2Q |
6: Set the width of the stripe frequency band w1 and w2 |
7: Calculate the Fourier Spectrum F1 of pre_img |
8: Calculate the Fourier Spectrum F2 of destripe_img1 |
9: Calculate the row M and column N of the Fourier Spectrum, |
10: Calculate the center row of the Fourier Spectrum c1 = M/2 + 1, |
11: Calculate the center column of the Fourier Spectrum c2 = N/2 + 1 |
12: Calculate the frequency band of vertical stripes SFB1 = [c1 − w1: c1 + w1, 1: N] |
13: Calculate the frequency band of horizontal stripes SFB2 = [1: M, c2 − w2: c2 + w2] |
14: The stripe frequency band of F1 is replaced by F2, |
F3 = F1, F3(SFB1) = F2(SFB1), F3(SFB2) = F2(SFB2) |
15: Calculate the Fourier inversion of the F3, and obtain the final stripe removed image destipe_img |
Output: SDGSAT-1’s thermal infrared striping image destripe_img |
3. Results
3.1. Simulation Image Data Processing and Result Analysis
- (1)
- The results of the combined processing based on GF and FSG frequency domain guidance still have corresponding problems, as shown in Figure 3c,g, respectively.
- (2)
- The algorithm based on a-contrario can effectively remove horizontal stripes, but the effect of removing fine stripes in the vertical direction is poor.
- (3)
- The algorithm based on the combination of a-contrario and FSG frequency domain guidance also has corresponding problems, as shown in Figure 3d and h, respectively.
- (4)
- The results of processing based on a separate FSG frequency domain guidance algorithm is shown in Figure 3f. It can be seen that the algorithm has a certain effect on the removal of vertical fine stripes and horizontal stripes, but there are still many fringe noise residues. The main reason is that the frequency band of Gaussian filtering is used in the algorithm to replace the fringe band, and simple Gaussian filtering cannot completely remove the image fringe effectively.
- (5)
- The results of processing based on LRSID algorithm are shown in Figure 3e. It can be seen that the vertical fine stripes and horizontal stripes have been effectively removed, but the image details are blurred.
- (6)
- The processing results of the algorithm based on the combination of LRSID and frequency domain guidance proposed in this paper are shown in Figure 3i. It can be seen that the fringes have been effectively removed, and the image details are still preserved, which has the best de fringes effect compared with other algorithms.
- (1)
- The change curve of the striped image based on the a-contrario algorithm and the algorithm based on the combination of a-contrario and FSG frequency domain guidance is also far from that of the GT image, indicating that its de striping effect is poor.
- (2)
- The change curve of the striped image based on GT algorithm and the algorithm based on the combination of GF and FSG frequency domain guidance is closer to the GT image curve, but smoother.
- (3)
- The curve of the processed image based on FSG frequency domain guidance algorithm is also closer to the GT image, and the algorithm also has a certain effect.
- (4)
- Based on LRSID algorithm and the algorithm proposed in this paper, the average change curve of column pixels in the removing striped image is the closest to that of GT image, which shows that the algorithm has the best strips removal effect.
- (1)
- Gray variance.
- (2)
- Absolute value of gray difference.
- (3)
- Gary difference sum of squares.
- (4)
- Brenner function.
- (5)
- Roberts gradient sum.
- (6)
- Laplace gradient sum 1.
- (7)
- Laplace gradient sum 2.
- (8)
- Tenengrad function.
- (9)
- Frequency domain evaluation.
- (10)
- Vollaths function.
3.2. Real Image Processing and Result Analysis of SDGSAT-1 Thermal Imager
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.G.; Morgan, G.L.K. FFT selective and adaptive filtering for removal of systematic noise in ETM+ imageodesy images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3716–3724. [Google Scholar] [CrossRef]
- Rakwatin, P.; Takeuchi, W.; Yasuoka, Y. Stripe noise reduction in MODIS data by combining histogram matching with facet filter. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1844–1856. [Google Scholar] [CrossRef]
- Rakwatin, P.; Takeuchi, W.; Yasuoka, Y. Restoration of Aqua MODIS band 6 using histogram matching and local least squares fitting. IEEE Trans. Geosci. Remote Sens. 2008, 47, 613–627. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, L.; Gu, X.; Yu, T. Destriping. MODIS data based on surface spectral correlation. IEEE Int. Geosci. Remote Sens. Symp. 2008, 3, 266–269. [Google Scholar]
- Gladkova, I.; Grossberg, M.D.; Shahriar, F.; Bonev, G.; Romanov, P. Quantitative restoration for MODIS band 6 on Aqua. IEEE Trans. Geosci. Remote Sens. 2011, 50, 2409–2416. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, M.Y.; Tisse, C.-L. Effective strip noise removal for low-textured infrared images based on 1-D guided filtering. IEEE Trans. Circuits Syst. Video Technol. 2015, 26, 2176–2188. [Google Scholar] [CrossRef]
- Sur, F. An a-contrario approach to quasi-periodic noise removal. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 3841–3845. [Google Scholar]
- Zeng, Q.; Qin, H.; Yan, X.; Zhou, H. Fourier spectrum guidance for stripe noise removal in thermal infrared imagery. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1072–1076. [Google Scholar] [CrossRef]
- Acito, N.; Diani, M.; Corsini, G. Subspace-based striping noise reduction in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2010, 49, 1325–1342. [Google Scholar] [CrossRef]
- Zhang, H.; He, W.; Zhang, L.; Shen, H.; Yuan, Q. Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4729–4743. [Google Scholar] [CrossRef]
- He, W.; Zhang, H.; Zhang, L.; Shen, H. Total-variation-regularized low-rank matrix factorization for hyperspectral image restoration. IEEE Trans. Geosci. Remote Sens. 2015, 54, 178–188. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.; Wu, T.; Zhong, S. Remote sensing image stripe noise removal: From image decomposition perspective. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7018–7031. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.; Zhong, S. Transformed low-rank model for line pattern noise removal. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1726–1734. [Google Scholar]
- Xie, Q.; Zhao, Q.; Meng, D.; Xu, Z.; Gu, S.; Zuo, W.; Zhang, L. Multispectral images denoising by intrinsic tensor sparsity regularization. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1692–1700. [Google Scholar]
- Cao, W.; Wang, K.; Han, G.; Yao, J.; Cichocki, A. A robust PCA approach with noise structure learning and spatial–spectral low-rank modeling for hyperspectral image restoration. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3863–3879. [Google Scholar] [CrossRef]
- Fan, H.; Li, C.; Guo, Y.; Kuang, G.; Ma, J. Spatial–spectral total variation regularized low-rank tensor decomposition for hyperspectral image denoising. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6196–6213. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, J.; Zhao, Q.; Leung, Y.; Zhao, X.-L.; Meng, D. Hyperspectral image restoration via total variation regularized low-rank tensor decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 1227–1243. [Google Scholar] [CrossRef]
- Xiao, P.; Guo, Y.; Zhuang, P. Removing stripe noise from infrared cloud images via deep convolutional networks. IEEE Photon. J. 2018, 10, 1–14. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.; Fang, H.; Zhong, S.; Liao, W. HSI-DeNet: Hyperspectral image restoration via convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2018, 57, 667–682. [Google Scholar] [CrossRef]
- Xu, K.; Zhao, Y.; Li, F.; Xiang, W. Single infrared image stripe removal via deep multi-scale dense connection convolutional neural network. Infrared Phys. Technol. 2022, 121, 104008. [Google Scholar] [CrossRef]
- Chang, Y.; Chen, M.; Yan, L.; Zhao, X.-L.; Li, Y.; Zhong, S. Toward universal stripe removal via wavelet-based deep convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2880–2897. [Google Scholar] [CrossRef]
- USGS Science for a Changing Word. Available online: https://earthexplorer.usgs.gov/ (accessed on 1 June 2022).
- Zhou, W.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar]
- Pang, S.L. The Research on Image Blur Assessment. Master’s Thesis, Xidian University, Xi′an, China, 2010. [Google Scholar]
Index | Noisy | GF | A-Contrario | LRSID | FSG | GF + FSG | A − Contrario + FSG | Ours |
---|---|---|---|---|---|---|---|---|
PSNR | 42.11 | 44.15 | 45.82 | 44.13 | 45.58 | 44.18 | 45.90 | 48.66 |
SSIM | 0.67 | 0.82 | 0.73 | 0.72 | 0.75 | 0.79 | 0.73 | 0.86 |
Index | GT | GF | A-Contrario | LRSID | FSG | GF + FSG | A − Contrario + FSG | Ours |
---|---|---|---|---|---|---|---|---|
Gray variance | 1.77 × 107 | 1.70 × 107 | 1.77 × 107 | 1.71 × 107 | 1.75 × 107 | 1.72 × 107 | 1.76 × 107 | 1.77 × 107 |
Absolute value of gray difference | 3.78 × 108 | 3.80 × 108 | 3.91 × 108 | 2.62 × 108 | 3.86 × 108 | 3.82 × 108 | 3.78 × 108 | 3.92 × 108 |
Gray difference sum of squares | 8.13 × 1011 | 7.92 × 1011 | 8.13 × 1011 | 5.47 × 1011 | 7.99 × 1011 | 7.98 × 1011 | 8.09 × 1011 | 8.17 × 1011 |
Brenner function | 1.00 × 1012 | 9.68 × 1011 | 1.01 × 1012 | 7.42 × 1011 | 9.84 × 1011 | 9.78 × 1011 | 9.97 × 1011 | 1.01 × 1012 |
Roberts gradient sum | 4.73 × 108 | 4.75 × 108 | 4.96 × 108 | 3.61 × 108 | 4.84 × 108 | 4.79 × 108 | 4.74 × 108 | 4.98 × 108 |
Laplace gradient sum 1 | 4.36 × 108 | 4.37 × 108 | 4.47 × 108 | 3.04 × 108 | 4.41 × 108 | 4.38 × 108 | 4.37 × 108 | 4.48 × 108 |
Laplace gradient sum 2 | 1.05 × 109 | 1.05 × 109 | 1.08 × 109 | 7.57 × 108 | 1.06 × 109 | 1.05 × 109 | 1.05 × 109 | 1.08 × 109 |
Tenengrad function | 1.58 × 109 | 1.58 × 109 | 1.65 × 109 | 1.32 × 109 | 1.62 × 109 | 1.60 × 109 | 1.58 × 109 | 1.66 × 109 |
Frequency domain evaluation | 3.12 × 105 | 3.09 × 105 | 3.11 × 105 | 2.43 × 105 | 3.09 × 105 | 3.10 × 105 | 3.11 × 105 | 3.12 × 105 |
Vollaths function | 3.07 × 1012 | 3.82 × 1012 | 3.02 × 1012 | 3.14 × 1012 | 2.12 × 1012 | 3.06 × 1012 | 3.04 × 1012 | 3.15 × 1012 |
Index | Origin | GF | A-Contrario | LRSID | FSG | GF + FSG | A − Contrario + FSG | Ours |
---|---|---|---|---|---|---|---|---|
ICV | 1017.23 | 1114.13 | 905.04 | 1748.65 | 1130.02 | 1101.57 | 821.14 | 1253.43 |
MRD | 0.00% | 0.14% | 0.21% | 0.13% | 0.10% | 0.13% | 0.15% | 0.07% |
HC | 0.26 | 0.15 | 0.13 | 0.08 | 0.12 | 0.10 | 0.06 | 0.05 |
Index | GF | A-Contrario | LRSID | FSG | GF + FSG | A − Contrario + FSG | Ours |
---|---|---|---|---|---|---|---|
Gray variance | 520 | 526 | 499 | 531 | 522 | 532 | 531 |
Absolute value of gray difference | 1.66 × 106 | 1.64 × 106 | 7.20 × 105 | 1.67 × 106 | 1.67 × 106 | 1.68 × 106 | 1.68 × 106 |
Gray difference sum of squares | 1.20 × 107 | 1.15 × 107 | 3.32 × 106 | 1.22 × 107 | 1.21 × 107 | 1.23 × 107 | 1.23 × 107 |
Brenner function | 1.52 × 107 | 1.42 × 107 | 5.55 × 106 | 1.55 × 107 | 1.54 × 107 | 1.56 × 107 | 1.56 × 107 |
Roberts gradient sum | 2.08 × 106 | 2.04 × 106 | 1.06 × 106 | 2.10 × 106 | 2.09 × 106 | 2.12 × 106 | 2.11 × 106 |
Laplace gradient sum 1 | 1.92 × 106 | 1.89 × 106 | 4.69 × 105 | 1.92 × 106 | 1.92 × 106 | 1.93 × 106 | 1.93 × 106 |
Laplace gradient sum 2 | 4.35 × 106 | 4.24 × 106 | 1.27 × 106 | 4.37 × 106 | 4.36 × 106 | 4.38 × 106 | 4.37 × 106 |
Tenengrad function | 6.73 × 106 | 6.66 × 106 | 4.32 × 106 | 6.86 × 106 | 6.79 × 106 | 6.92 × 106 | 6.85 × 106 |
Frequency domain evaluation | 1.19 × 103 | 1.17 × 103 | 4.01 × 103 | 1.20 × 103 | 1.20 × 103 | 1.20 × 103 | 1.20 × 103 |
Vollaths function | 2.00 × 109 | 1.95 × 109 | 7.68 × 109 | 2.02 × 109 | 2.01 × 109 | 2.02 × 109 | 2.01 × 109 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhong, L.; Hu, Z.; Chen, F. An Improved Frequency Domain Guided Thermal Imager Strips Removal Algorithm Based on LRSID. Sensors 2022, 22, 7348. https://doi.org/10.3390/s22197348
Li J, Zhong L, Hu Z, Chen F. An Improved Frequency Domain Guided Thermal Imager Strips Removal Algorithm Based on LRSID. Sensors. 2022; 22(19):7348. https://doi.org/10.3390/s22197348
Chicago/Turabian StyleLi, Junchen, Li Zhong, Zhuoyue Hu, and Fansheng Chen. 2022. "An Improved Frequency Domain Guided Thermal Imager Strips Removal Algorithm Based on LRSID" Sensors 22, no. 19: 7348. https://doi.org/10.3390/s22197348
APA StyleLi, J., Zhong, L., Hu, Z., & Chen, F. (2022). An Improved Frequency Domain Guided Thermal Imager Strips Removal Algorithm Based on LRSID. Sensors, 22(19), 7348. https://doi.org/10.3390/s22197348