Simplifying the Experimental Detection of the Vortex Topological Charge Based on the Simultaneous Astigmatic Transformation of Several Types and Levels in the Same Focal Plane
Abstract
:1. Introduction
2. Methods
2.1. Theoretical Foundations
2.2. Simulation of Astigmatic Transformations
3. Proposed Approach Based on Multi-Channel DOEs
3.1. Principle of Operation
3.2. Simulation Results for Multi-Channel DOEs
3.3. Optimization for High-Order TC
4. Laboratory Experiments
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nye, J.F.; Berry, M.V. Dislocations in Wave Trains. Proc. R. Soc. A 1974, 336, 165. [Google Scholar]
- Bazhenov, V.Y.; Soskin, M.S.; Vasnetsov, M.V. Screw Dislocations in Light Wavefronts. J. Mod. Opt. 1992, 39, 985. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kotlyar, V.V.; Shinkarev, M.V.; Soifer, V.A.; Uspleniev, G.V. The Rotor Phase Filter. J. Mod. Opt. 1992, 39, 1147. [Google Scholar] [CrossRef]
- Berry, M.V. Optical Vortices Evolving from Helicoidal Integer and Fractional Phase Steps. J. Opt. A Pure Appl. Opt. 2004, 6, 259. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef] [PubMed]
- Porfirev, A.P.; Kuchmizhak, A.A.; Gurbatov, S.O.; Juodkazis, S.; Khonina, S.N.; Kul’chin, Y.N. Phase singularities and optical vortices in photonics. Phys. Usp. 2021, 8. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital Angular Momentum of Light and the Transformation of Laguerre–Gaussian Laser Modes. Phys. Rev. A 1992, 45, 8185. [Google Scholar] [CrossRef]
- Padgett, M.; Courtial, J.; Allen, L. Light’s Orbital Angular Momentum. Phys. Today 2004, 57, 35. [Google Scholar] [CrossRef]
- Yao, A.M.; Padgett, M.J. Orbital Angular Momentum: Origins, Behavior and Applications. Adv. Opt. Photonics 2011, 3, 161. [Google Scholar] [CrossRef]
- Padgett, M.J. Orbital Angular Momentum 25 Years on. Opt. Express 2017, 25, 11265. [Google Scholar] [CrossRef]
- Fatkhiev, D.M.; Butt, M.A.; Grakhova, E.P.; Kutluyarov, R.V.; Stepanov, I.V.; Kazanskiy, N.L.; Khonina, S.N.; Lyubopytov, V.S.; Sultanov, A.K. Recent Advances in Generation and Detection of Orbital Angular Momentum Optical Beams—A Review. Sensors 2021, 21, 4988. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.; Courtial, J.; Padgett, M.; Vasnetsov, M.; Pas’ko, V.; Barnett, S.; Franke-Arnold, S. Free-Space Information Transfer Using Light Beams Carrying Orbital Angular Momentum. Opt. Express 2004, 12, 5448. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, J.-Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit Free-Space Data Transmission Employing Orbital Angular Momentum Multiplexing. Nat. Photonics 2012, 6, 488. [Google Scholar] [CrossRef]
- Bozinovic, N.; Yue, Y.; Ren, Y.; Tur, M.; Kristensen, P.; Huang, H.; Willner, A.E.; Ramachandran, S. Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers. Science 2013, 340, 1545. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Huang, S.; Shao, W.; Zhang, J.; Chen, M.; Zhang, W.; Zeng, J. Freespace Optical Communication Link using Perfect Vortex Beams Carrying Orbital Angular Momentum (OAM). Opt. Commun. 2017, 396, 50. [Google Scholar] [CrossRef]
- Karpeev, S.V.; Podlipnov, V.V.; Ivliev, N.A.; Khonina, S.N. High-speed Format 1000BASESX/LX Transmission through the Atmosphere by Vortex Beams near IR Range with Help Modified SFP-Transivers DEM-310GT. Comput. Opt. 2020, 44, 578. [Google Scholar] [CrossRef]
- Khonina, S.N.; Karpeev, S.V.; Butt, M.A. Spatial-Light-Modulator-Based Multichannel Data Transmission by Vortex Beams of Various Orders. Sensors 2021, 21, 2988. [Google Scholar] [CrossRef]
- Grier, D.A. Revolution in optical manipulation. Nature 2003, 424, 14. [Google Scholar] [CrossRef]
- Paez-Lopez, R.; Ruiz, U.; Arrizon, V.; Ramos-Garcia, R. Optical manipulation using optimal annular vortices. Opt. Lett. 2016, 41, 4138. [Google Scholar] [CrossRef]
- Shi, L.; Lindwasser, L.; Wang, W.; Alfano, R.; Rodriguez-Contreras, A. Propagation of Gaussian and Laguerre-Gaussian vortex beams through mouse brain tissue. J. Biophotonics 2007, 10, 1756. [Google Scholar] [CrossRef]
- Sirenko, A.A.; Marsik, P.; Bernhard, C.; Stanislavchuk, T.N.; Kiryukhin, V.; Cheong, W. Terahertz Vortex Beam as a Spectroscopic Probe of Magnetic Excitations. Phys. Rev. Lett. 2019, 122, 237401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khonina, S.N.; Kotlyar, V.; Soifer, V.; Paakkonen, P.; Simonen, J.; Turunen, J. An Analysis of the Angular Momentum of a Light Field in Terms of Angular Harmonics. J. Mod. Opt. 2001, 48, 1543. [Google Scholar] [CrossRef]
- Moreno, I.; Davis, J.A.; Pascoguin, B.L.; Mitry, M.J.; Cottrell, D.M. Vortex Sensing Diffraction Gratings. Opt. Lett. 2009, 34, 2927. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Zhang, S.; Wang, T.; Gao, C. Measurement of Orbital Angular Momentum Spectra of Multiplexing Optical Vortices. Opt. Express 2016, 24, 6240. [Google Scholar] [CrossRef]
- D’Errico, A.; D’Amelio, R.; Piccirillo, B.; Cardano, F.; Marrucci, L. Measuring the Complex Orbital Angular Momentum Spectrum and Spatial Mode Decomposition of Structured Light Beams. Optica 2017, 4, 1350. [Google Scholar] [CrossRef]
- Fu, S.; Zhai, Y.; Wang, T.; Yin, C.; Gao, C. Orbital Angular Momentum Channel Monitoring of Coaxially Multiplexed Vortices by Diffraction Pattern Analysis. Appl. Opt. 2018, 57, 1056. [Google Scholar] [CrossRef]
- Berkhout, G.C.G.; Lavery, M.P.J.; Courtial, J.; Beijersbergen, M.W.; Padgett, M.J. Efficient Sorting of Orbital Angular Momentum States of Light. Phys. Rev. Lett. 2010, 105, 153601. [Google Scholar] [CrossRef]
- Mirhosseini, M.; Malik, M.; Shi, Z.; Boyd, R.W. Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun. 2013, 4, 2781. [Google Scholar] [CrossRef]
- Wen, Y.; Chremmos, I.; Chen, Y.; Zhu, J.; Zhang, Y.; Yu, S. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes. Phys. Rev. Lett. 2018, 120, 193904. [Google Scholar] [CrossRef]
- Wen, Y.; Chremmos, I.; Chen, Y.; Zhu, G.; Zhang, J.; Zhu, J.; Zhang, Y.; Liu, J.; Yu, S. Compact and High-Performance Vortex Mode Sorter for Multi-Dimensional Multiplexed Fiber Communication Systems. Optica 2020, 7, 254. [Google Scholar] [CrossRef]
- Abramochkin, E.; Volostnikov, V. Beam Transformations and Nontransformed Beams. Opt. Commun. 1991, 83, 123. [Google Scholar] [CrossRef]
- Beijersbergen, M.W.; Allen, L.; van der Veen, H.E.L.O.; Woerdman, J.P. Astigmatic Laser Mode Converters and Transfer of Orbital Angular Momentum. Opt. Commun. 1993, 96, 123. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kotlyar, V.V.; Soifer, V.A.; Jefimovs, K.; Paakkonen, P.; Turunen, J. Astigmatic Bessel laser beams. J. Mod. Opt. 2004, 51, 677. [Google Scholar] [CrossRef]
- Bekshaev, A.Y.; Soskin, M.S.; Vasnetsov, M.V. Transformation of Higher-Order Optical Vortices upon Focusing by a Astigmatic Lens. Opt. Commun. 2004, 241, 237. [Google Scholar] [CrossRef]
- Abramochkin, E.; Razueva, E.; Volostnikov, V. General Astigmatic Transform of Hermite-Laguerre-Gaussian Beams. J. Opt. Soc. Am. A 2010, 27, 2506. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.G.; Prabhakar, S.; Aqadhi, A.; Banerji, J.; Singh, R.P. Propagation of an Arbitrary Vortex Pair through an Astigmatic Optical System and Determination of Its Topological Charge. J. Opt. Soc. Am. A 2014, 31, 1295. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A.; Porfirev, A.P. Determination of an Optical Vortex Topological Charge using an Astigmatic Transform. Comput. Opt. 2016, 40, 781. [Google Scholar] [CrossRef]
- Porfirev, A.P.; Khonina, S.N. Astigmatic Transformation of Optical Vortex Beams with High-Order Cylindrical Polarization. J. Opt. Soc. Am. B 2019, 36, 2193. [Google Scholar] [CrossRef]
- Vaity, P.; Banerji, J.; Singh, R.P. Measuring the Topological Charge of an Optical Vortex by Using a Tilted Convex Lens. Phys. Lett. A 2013, 377, 1154. [Google Scholar] [CrossRef]
- Peng, Y.; Gan, X.; Ju, P.; Wang, Y.; Zhao, J. Measuring Topological Charges of Optical Vortices with Multi-Singularity using a Cylindrical Lens. Chin. Phys. Lett. 2015, 32, 024201. [Google Scholar] [CrossRef]
- Liu, P.; Cao, Y.; Lu, Z.; Lin, G. Probing Arbitrary Laguerre–Gaussian Beams and Pairs through a Tilted Biconvex Lens. J. Opt. 2021, 23, 025002. [Google Scholar] [CrossRef]
- Thaning, A.; Jaroszewicz, Z.; Friberg, A.T. Diffractive Axicons in Oblique Illumination: Analysis and Experiments and Comparison with Elliptical Axicons. Appl. Opt. 2003, 42, 9. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N.; Kazanskiy, N.L.; Khorin, P.A.; Butt, M.A. Modern Types of Axicons: New Functions and Applications. Sensors 2021, 21, 6690. [Google Scholar] [CrossRef]
- Dwivedi, R.; Sharma, P.; Jaiswal, V.K.; Mehrotra, R. Elliptically Squeezed Axicon Phase for Detecting Topological Charge of Vortex Beam. Opt. Commun. 2021, 485, 126710. [Google Scholar] [CrossRef]
- Almazov, A.A.; Khonina, S.N.; Kotlyar, V.V. How the Tilt of a Phase Diffraction Optical Element Affects the Properties of Shaped Laser Beams Matched with a Basis of Angular Harmonics. J. Opt. Technol. 2006, 73, 633. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Kovalev, A.A.; Porfirev, A.P. Astigmatic Transforms of an Optical Vortex for Measurement of Its Topological Charge. Appl. Opt. 2017, 56, 4095. [Google Scholar] [CrossRef] [PubMed]
- Hacyan, S.; Jáuregui, R. Evolution of Optical Phase and Polarization Vortices in Birefringent Media. J. Opt. A Pure Appl. Opt. 2009, 11, 085204. [Google Scholar] [CrossRef]
- Zusin, D.H.; Maksimenka, R.; Filippov, V.V.; Chulkov, R.V.; Perdrix, M.; Gobert, O.; Grabtchikov, A.S. Bessel Beam Transformation by Anisotropic Crystals. J. Opt. Soc. Am. A 2010, 27, 1828. [Google Scholar] [CrossRef]
- Khonina, S.N.; Paranin, V.D.; Ustinov, A.V.; Krasnov, A.P. Astigmatic Transformation of Bessel Beams in a Uniaxial Crystal. Opt. Appl. 2016, 46, 5. [Google Scholar]
- Khonina, S.N.; Porfirev, A.P.; Kazanskiy, N.L. Variable Transformation of Singular Cylindrical Vector Beams using Anisotropic Crystals. Sci. Rep. 2020, 10, 5590. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, J. Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings. Sci. Rep. 2017, 7, 40781. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, S.; Fathollazade, S.; Amiri, P. Simple, Efficient and Reliable Characterization of Laguerre-Gaussian Beams with Non-Zero Radial Indices in Diffraction from an Amplitude Parabolic-Line Linear Grating. Opt. Express 2021, 29, 29661. [Google Scholar] [CrossRef] [PubMed]
- Amiri, P.; Mardan Dezfouli, A.; Rasouli., S. Efficient characterization of optical vortices via diffraction from parabolic-line linear gratings. J. Opt. Soc. Am. B 2020, 37, 2668. [Google Scholar] [CrossRef]
- Rasouli, S.; Amiri, P.; Kotlyar, V.; Kovalev, A. Characterization of a Pair of Superposed Vortex Beams Having Different Winding Numbers via Diffraction from a Quadratic Curved-Line Grating. J. Opt. Am. B 2021, 38, 2267. [Google Scholar] [CrossRef]
- Bekshaev, A.Y.; Karamoch, A.I. Astigmatic Telescopic Transformation of a High-Order Optical Vortex. Opt. Commun. 2008, 281, 5687. [Google Scholar] [CrossRef]
- Porfirev, A.P.; Khonina, S.N. Experimental Investigation of Multi-Order Diffractive Optical Elements Matched with Two Types of Zernike Functions. Proc. SPIE 2016, 9807, 98070E. [Google Scholar]
- Khonina, S.N.; Karpeev, S.V.; Porfirev, A.P. Wavefront Aberration Sensor Based on a Multichannel Diffractive Optical Element. Sensors 2020, 20, 3850. [Google Scholar] [CrossRef]
- Khorin, P.A.; Khonina, S.N. Aberration-Matched Filters for Vortex Beams Transformations. Proc. SPIE 2022, 12295, 122950R. [Google Scholar]
- Khonina, S.N.; Karpeev, S.V.; Paranin, V.D. A technique for simultaneous detection of individual vortex states of Laguerre–Gaussian beams transmitted through an aqueous suspension of microparticles. Opt. Lasers Eng. 2018, 105, 68. [Google Scholar] [CrossRef]
- Arnaud, J.; Kogelnik, H. Gaussian Beams with General Astigmatism. Appl. Opt. 1969, 25, 2908. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Lakshminarayanana, V.; Fleck, A. Zernike Polynomials: A Guide. J. Mod. Opt. 2011, 58, 545. [Google Scholar] [CrossRef]
- Vinogradova, M.B.; Rudenko, O.V.; Sukhorukov, A.P. Wave Theory, 2nd ed.; Nauka Publisher: Moscow, Russia, 1979. [Google Scholar]
- Abramochkin, E.; Losevsky, N.; Volostnikov, V. Generation of Spiral-Type Laser Beams. Opt. Commun. 1997, 141, 59. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Soifer, V.A.; Khonina, S.N. Rotation of Multimode Gauss-Laguerre Light Beams in Free Space. Tech. Phys. Lett. 1997, 23, 657. [Google Scholar] [CrossRef]
- Khonina, S.N.; Koltyar, V.V.; Soifer, V.A. Techniques for encoding composite diffractive optical elements. Proc. SPIE 2003, 5036, 493–498. [Google Scholar]
- Kogelnik, H.; Li, T. Laser Beams and Resonators. Appl. Opt. 1966, 5, 1550. [Google Scholar] [CrossRef]
- Kotlyar, V.V.; Khonina, S.N.; Soifer, V.A. Generalized Hermite Beams in Free Space. Optik 1998, 108, 20–26. [Google Scholar]
- Kotlyar, V.V.; Kovalev, A.A.; Porfirev, A.P.; Kozlova, E.S. Three Different Types of Astigmatic Hermite-Gaussian Beams with Orbital Angular Momentum. J. Opt. 2019, 21, 115601. [Google Scholar] [CrossRef]
- Khonina, S.N.; Balalayev, S.A.; Skidanov, R.V.; Kotlyar, V.V.; Päivänranta, B.; Turunen, J. Encoded binary diffractive element to form hyper-geometric laser beams. J. Opt. 2009, 11, 065702. [Google Scholar] [CrossRef]
- Khonina, S.N.; Skidanov, R.V.; Kotlyar, V.V.; Jefimovs, K.; Turunen, J. Phase diffractive filter to analyze an output step-index fiber beam. Proc. SPIE Int. Soc. Opt. Eng. 2004, 5182, 251. [Google Scholar]
- Guo, H.; Korablinova, N.; Ren, Q.; Bille, J. Wavefront Reconstruction with Artificial Neural Networks. Opt. Express 2006, 14, 6456. [Google Scholar] [CrossRef]
- Nishizaki, Y.; Valdivia, M.; Horisaki, R.; Kitaguchi, K.; Saito, M.; Tanida, J.; Vera, E. Deep Learning Wavefront Sensing. Opt. Express 2019, 27, 240. [Google Scholar] [CrossRef] [PubMed]
- Rodin, I.A.; Khonina, S.N.; Serafimovich, P.G.; Popov, S.B. Recognition of Wavefront Aberrations Types Corresponding to Single Zernike Functions from the Pattern of the Point Spread Function in the Focal Plane using Neural Networks. Comput. Opt. 2020, 44, 923. [Google Scholar] [CrossRef]
- Khorin, P.A.; Dzyuba, A.P.; Serafimovich, P.G.; Khonina, S.N. Neural Networks Application to Determine the Types and Magnitude of Aberrations from the Pattern of the Point Spread Function out of the Focal Plane. J. Phys. Conf. Ser. 2021, 2086, 012148. [Google Scholar] [CrossRef]
- Khonina, S.N.; Khorin, P.A.; Serafimovich, P.G.; Dzyuba, A.P.; Georgieva, A.O.; Petrov, N.V. Analysis of the Wavefront Aberrations based on Neural Networks Processing of the Interferograms with a Conical Reference Beam. Appl. Phys. B 2022, 128, 60. [Google Scholar] [CrossRef]
n | m | Aberration Type | Mathematical Representation | Phase |
---|---|---|---|---|
2 | 2 | Astigmatism | ||
4 | 2 | Fourth order astigmatism | ||
6 | 2 | Sixth order astigmatism | ||
8 | 2 | Eighth order astigmatism | ||
q | 2 | qth order astigmatism |
Astigmatic Transformation Equation (4) | Mathematical Representation as Zernike Functions of Equation (5) | Phase |
---|---|---|
xy | ||
Astigmatic Parameters | Topological Charge | |||||
---|---|---|---|---|---|---|
l = −5 | l = −3 | l = −1 | l = 1 | l = 3 | l = 5 | |
n = 2, α = 3λ | ||||||
n = 4, α = λ | ||||||
n = 6, α = λ | ||||||
n = 8, α = λ |
Astigmatic Parameters | Intensity Distributions at Various Distances Δz from the Focal Plane | ||||
---|---|---|---|---|---|
0 mm | 100 mm | 200 mm | 300 mm | ||
TC l = 1 | n = 2, α = 3λ | ||||
n = 4, α = λ | |||||
n = 6, α = λ | |||||
TC l = 3 | n = 2, α = 3λ | ||||
n = 4, α = λ | |||||
n = 6, α = λ | |||||
TC l = 5 | n = 2, α = 3λ | ||||
n = 4, α = λ | |||||
n = 6, α = λ |
l = 1 | l = 3 | l = 5 |
---|---|---|
Vortex TCl= 3 | ||
n = 2 | n = 4 | n = 6 |
Vortex TCl = 5 | ||
n = 2 | n = 4 | n = 6 |
Vortex TCl = 7 | ||
n = 2 | n = 4 | n = 6 |
n = 2 | n = 4 | n = 6 |
---|---|---|
TC | 25-Channel DOE Action | TC | 25-Channel DOE Action |
---|---|---|---|
l = 1 | l = 2 | ||
l = 3 | l = 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khorin, P.A.; Khonina, S.N.; Porfirev, A.P.; Kazanskiy, N.L. Simplifying the Experimental Detection of the Vortex Topological Charge Based on the Simultaneous Astigmatic Transformation of Several Types and Levels in the Same Focal Plane. Sensors 2022, 22, 7365. https://doi.org/10.3390/s22197365
Khorin PA, Khonina SN, Porfirev AP, Kazanskiy NL. Simplifying the Experimental Detection of the Vortex Topological Charge Based on the Simultaneous Astigmatic Transformation of Several Types and Levels in the Same Focal Plane. Sensors. 2022; 22(19):7365. https://doi.org/10.3390/s22197365
Chicago/Turabian StyleKhorin, Pavel A., Svetlana N. Khonina, Alexey P. Porfirev, and Nikolay L. Kazanskiy. 2022. "Simplifying the Experimental Detection of the Vortex Topological Charge Based on the Simultaneous Astigmatic Transformation of Several Types and Levels in the Same Focal Plane" Sensors 22, no. 19: 7365. https://doi.org/10.3390/s22197365
APA StyleKhorin, P. A., Khonina, S. N., Porfirev, A. P., & Kazanskiy, N. L. (2022). Simplifying the Experimental Detection of the Vortex Topological Charge Based on the Simultaneous Astigmatic Transformation of Several Types and Levels in the Same Focal Plane. Sensors, 22(19), 7365. https://doi.org/10.3390/s22197365