An Improved WMS-2f/1f Spectral Fitting Method Using Orthogonal Test in Initial Parameters Selection
Abstract
:1. Introduction
2. Theory
2.1. Wavelength Modulation Spectroscopy
2.2. Orthogonal Test Method
3. Experimental Validation
4. Results and Discussions
4.1. Optimized Initial Parameters Obtained by OTM
4.2. Fitting Performance of the Optimized Initial Parameters
4.3. Temperature from the WMS-2f/1f
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Webber, M.E.; Baer, D.S.; Hanson, R.K. Ammonia monitoring near 1.5 µm with diode-laser absorption sensors. Appl. Opt. 2001, 40, 2031–2042. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Liu, J.; Xu, Z.; He, Y.; Kan, R. Characterization of temperature non-uniformity over a premixed CH4-air flame based on line-of-sight TDLAS. Appl. Phys. B 2016, 122, 3. [Google Scholar] [CrossRef]
- So, S.; Jeong, N.; Song, A.; Hwang, J.; Lee, C. Measurement of temperature and H2O concentration in premixed ch4/air flame using two partially overlapped H2O absorption signals in the near infrared region. Appl. Sci. 2021, 11, 3701. [Google Scholar] [CrossRef]
- McGettrick, A.J.; Duffin, K.; Johnstone, W.; Stewart, G.; Moodie, D.G. Tunable diode laser spectroscopy with wavelength modulation: A phasor decomposition method for calibration-free measurements of gas concentration and pressure. J. Light. Technol. 2008, 26, 432–440. [Google Scholar] [CrossRef]
- Ahmed, F.; Esmail, M.; Kawahara, N.; Tomita, E. CO2 concentration measurements inside expansion-compression engine under high EGR conditions using an infrared absorption method. Ain Shams Eng. J. 2019, 11, 787–793. [Google Scholar] [CrossRef]
- Li, H.; Farooq, A.; Jeffries, J.B.; Hanson, R.K. Diode laser measurements of temperature-dependent collisionalnarrowing and broadening parameters of Ar-perturbed H2O transitions at 1391.7 and 1397.8 nm. J. Quant. Spectrosc. Radiat. Transf. 2008, 109, 132–143. [Google Scholar] [CrossRef]
- Goldenstein, C.S.; Spearrin, R.M.; Jeffries, J.B.; Hanson, R.K. Infrared laser-absorption sensing for combustion gases. Prog. Energy Combust. Sci. 2017, 60, 132–176. [Google Scholar] [CrossRef]
- Luo, L.; Li, T.; Deng, J.; Zhao, R.; Wang, J.; Xu, L. Experimental Investigation on Self-Excited Thermoacoustic Instability in a Rijke Tube. Appl. Sci. 2022, 12, 8046. [Google Scholar] [CrossRef]
- Reuter, S.; Sousa, J.S.; Stancu, G.D.; van Helden, J.H. Review on VUV to MIR absorption spectroscopy of atmospheric pressure plasma jets. Plasma Sources Sci. Technol. 2015, 24, 054001. [Google Scholar] [CrossRef]
- Wei, M.; Kan, R.; Chen, B.; Xu, Z.; Yang, C.; Chen, X.; Xia, H.; Hu, M.; He, Y.; Liu, J.; et al. Calibration-free wavelength modulation spectroscopy for gas concentration measurements using a quantum cascade laser. Appl. Phys. B 2017, 123, 149. [Google Scholar] [CrossRef]
- Witzel, O.; Klein, A.; Meffert, C.; Wagner, S.; Ebert, V. Vcsel-based, high-speed, in situ TDLAS for in-cylinder water vapor measurements in IC engines. Opt. Express 2013, 21, 19951–19965. [Google Scholar] [CrossRef] [PubMed]
- Goldenstein, C.S.; Jeffries, J.B.; Hanson, R.K. Diode laser measurements of linestrength and temperaturedependent lineshape parameters of H2O-, CO2-, and N2-perturbed H2O transitions near 2474 and 2482 nm. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 100–111. [Google Scholar] [CrossRef]
- Bendana, F.A.; Lee, D.D.; Schumaker, S.A.; Danczyk, S.A.; Spearrin, R.M. Cross-band infrared laser absorption of carbon monoxide for thermometry and species sensing in high-pressure rocket flows. Appl. Phys. B 2019, 125, 204. [Google Scholar] [CrossRef]
- Goldenstein, C.S.; Strand, C.L.; Schultz, I.A.; Sun, K.; Jeffries, J.B.; Hanson, R.K. Fitting of calibration-free scanned-wavelength-modulation spectroscopy spectra for determination of gas properties and absorption lineshapes. Appl. Opt. 2014, 53, 356–367. [Google Scholar] [CrossRef]
- Stewart, G.; Johnstone, W.; Bain, J.; Ruxton, K.; Duffin, K. Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation—Part I: Theoretical analysis. J. Light. Technol. 2011, 29, 811–821. [Google Scholar]
- Li, H.; Rieker, G.B.; Liu, X.; Jeffries, J.B.; Hanson, R.K. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. Appl. Opt. 2006, 45, 1052–1061. [Google Scholar] [CrossRef]
- Bain, J.R.P.; Johnstone, W.; Ruxton, K.; Stewart, G.; Lengden, M.; Duffin, K. Recovery of absolute gas absorption line shapes using tunable diode laser spectroscopy with wavelength modulation—Part II: Experimental investigation. J. Light. Technol. 2011, 29, 987–996. [Google Scholar] [CrossRef]
- Rieker, G.B.; Jeffries, J.B.; Hanson, R.K. Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments. Appl. Opt. 2009, 48, 5546. [Google Scholar] [CrossRef]
- Sun, K.; Chao, X.; Sur, R.; Goldenstein, C.S.; Jeffries, J.B.; Hanson, R.K. Analysis of calibration-free wavelength-scanned wavelength modulation spectroscopy for practical gas sensing using tunable diode lasers. Meas. Sci. Technol. 2013, 24, 125203. [Google Scholar] [CrossRef]
- Neethu, S.; Verma, R.; Kamble, S.S.; Radhakrishnan, J.K.; Krishnapur, P.P.; Padaki, V.C. Validation of wavelength modulation spectroscopy techniques for oxygen concentration measurement. Sens. Actuators B 2014, 192, 70–76. [Google Scholar] [CrossRef]
- Silver, J.A.; Kane, D.J. Diode laser measurements of concentration and temperature in microgravity combustion. Meas. Sci. Technol. 1999, 10, 845–852. [Google Scholar] [CrossRef]
- Wei, W.; Chang, J.; Wang, Q.; Qin, Z. Modulation index adjustment for recovery of pure wavelength modulation spectroscopy second harmonic signal waveforms. Sensors 2017, 17, 163. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.H.; Jin, Y.; Luo, Y.G. Parametric optimization of eq6110hev hybrid electric bus based on orthogonal experiment design. Int. J. Automot. Technol. 2010, 11, 119–125. [Google Scholar] [CrossRef]
- Cai, A.H.; Zhou, Y.; Tan, J.Y.; Luo, Y.; Li, T.L.; Chen, M.; An, W.K. Optimization of composition of heat-treated chromium white cast iron casting by phosphate graphite mold. J. Alloys Compd. 2008, 30, 2339–2344. [Google Scholar] [CrossRef]
- Cai, A.H.; Chen, H.; An, W.K.; Li, X.S.; Zhou, Y. Optimization of composition and technology for phosphate graphite mold. Mater. Des. 2008, 29, 1835–1839. [Google Scholar] [CrossRef]
- Xia, S.; Lin, R.; Cui, X.; Shan, J. The application of orthogonal test method in the parameters optimization of PEMFC under steady working condition. Int. J. Hydrogen Energy 2016, 41, 11380–11390. [Google Scholar] [CrossRef]
- Peng, J.; Dong, F.; Xu, Q.; Xu, Y.; Qi, Y.; Xu, H.; Fan, G.; Liu, K. Orthogonal test design for optimization of supercritical fluid extraction of daphnoretin, 7-methoxy-daphnoretin and 1,5-diphenyl-1-pentanone from stellera chamaejasme l. and subsequent isolation by high-speed counter-current chromatography. J. Chromatogr. A 2006, 1135, 151–157. [Google Scholar] [CrossRef]
- Zheng, W.; Dong, J.; Zhang, L.; Chen, Z. Heating performance for a hybrid radiant-convective heating terminal by orthogonal test method. J. Build. Eng. 2020, 33, 101627. [Google Scholar] [CrossRef]
- Reid, J.; Labrie, D. Second-harmonic detection with tunable diode lasers—Comparison of experiment and theory. Appl. Phys. B 1981, 26, 203–210. [Google Scholar] [CrossRef]
- Werle, P.; Slemr, F.; Maurer, K.; Kormann, R.; Muecke, R.; Jaenker, B. Near- and mid-infrared laser-optical sensors for gas analysis. Opt. Lasers Eng. 2002, 37, 101–114. [Google Scholar] [CrossRef]
- Bolshov, M.A.; Kuritsyn, Y.A.; Romanovskii, Y.V. Tunable diode laser spectroscopy as a technique for combustion diagnostics. Spectrochim. Acta Part B At. Spectrosc. 2015, 106, 45–66. [Google Scholar] [CrossRef]
- Kluczynski, P.; Gustafsson, J.; Lindberg, S.M.; Axner, O. Wavelength modulation absorption spectrometry—An extensive scrutiny of the generation of signals. Spectrochim. Acta Part B At. Spectrosc. 2001, 56, 1277–1354. [Google Scholar] [CrossRef]
- Gao, X.S.; Zhang, Y.D.; Zhang, H.W.; Wu, Q. Effects of machine tool configuration on its dynamics based on orthogonal experiment method. Chin. J. Aeronaut. 2012, 25, 285–291. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hill, C.; Kochanov, R.V.; Tan, Y.; Bernath, P.F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.V.; et al. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
Factors | Integrated Absorbance Area (A) | [cm−1] | [cm−1] |
---|---|---|---|
Level 1 | 0.001 | 7444.35 | 0.02 |
Level 2 | 0.002 | 7444.37 | 0.05 |
Level 3 | 0.003 | 7444.39 | 0.08 |
Test Numbers | Factors | SSE | ||
---|---|---|---|---|
Integrated Absorbance Area (A) | (cm−1) | (cm−1) | ||
1 | 0.001 | 7444.35 | 0.02 | 0.0106581 |
2 | 0.001 | 7444.37 | 0.05 | 0.0015216 |
3 | 0.001 | 7444.39 | 0.08 | 0.0042488 |
4 | 0.002 | 7444.35 | 0.05 | 0.0034304 |
5 | 0.002 | 7444.37 | 0.08 | 0.0043295 |
6 | 0.002 | 7444.39 | 0.02 | 0.0602594 |
7 | 0.003 | 7444.35 | 0.08 | 0.7740496 |
8 | 0.003 | 7444.37 | 0.02 | 0.9561091 |
9 | 0.003 | 7444.39 | 0.05 | 0.8002515 |
Factors | |||
---|---|---|---|
Integrated Absorbance Area (A) | (cm−1) | (cm−1) | |
0.016429 | 0.788138 | 1.027027 | |
0.068019 | 0.961960 | 0.805204 | |
2.530410 | 0.864760 | 0.782628 | |
0.005476 | 0.262713 | 0.342342 | |
0.022673 | 0.320653 | 0.268401 | |
0.843470 | 0.288253 | 0.260876 | |
0.837994 | 0.057940 | 0.081466 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, L.; Li, T.; Deng, J.; Zhao, R.; Wang, J. An Improved WMS-2f/1f Spectral Fitting Method Using Orthogonal Test in Initial Parameters Selection. Sensors 2022, 22, 7430. https://doi.org/10.3390/s22197430
Luo L, Li T, Deng J, Zhao R, Wang J. An Improved WMS-2f/1f Spectral Fitting Method Using Orthogonal Test in Initial Parameters Selection. Sensors. 2022; 22(19):7430. https://doi.org/10.3390/s22197430
Chicago/Turabian StyleLuo, Liezhao, Ting Li, Jiangge Deng, Runzhou Zhao, and Jinkui Wang. 2022. "An Improved WMS-2f/1f Spectral Fitting Method Using Orthogonal Test in Initial Parameters Selection" Sensors 22, no. 19: 7430. https://doi.org/10.3390/s22197430
APA StyleLuo, L., Li, T., Deng, J., Zhao, R., & Wang, J. (2022). An Improved WMS-2f/1f Spectral Fitting Method Using Orthogonal Test in Initial Parameters Selection. Sensors, 22(19), 7430. https://doi.org/10.3390/s22197430