Age-Related Differences in Intermuscular Coherence EMG-EMG of Ankle Joint Antagonist Muscle Activity during Maximal Leaning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Applied Equipment
2.2. Inclusion Criteria
Exclusion Criteria
2.3. Study Protocol
2.4. Central of Pressure and Coherence Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
sEMG | surface electromyography |
R2b | the distance between maximal and minimal position of central of pressure anterior/posterior in the 2nd phase |
COP A/P | central of pressure anterior/posteriori |
SD | standard deviation |
LoS | limits of stability |
EEG | electroencephalography |
TA | tibialis anterior muscle |
SOL | soleus muscle |
SENIAM | Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles |
References
- Skorupska, E. Muscle Atrophy Measurement as Assessment Method for Low Back Pain Patients. Adv. Exp. Med. Biol. 2018, 1088, 437–461. [Google Scholar] [CrossRef] [PubMed]
- Baudry, S. Aging Changes the Contribution of Spinal and Corticospinal Pathways to Control Balance. Exerc. Sport Sci. Rev. 2016, 44, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.; Piitulainen, H.; Manlangit, T.; Avela, J.; Baker, S.N. Older Adults Show Elevated Intermuscular Coherence in Eyes-Open Standing but Only Young Adults Increase Coherence in Response to Closing the Eyes. Exp. Physiol. 2020, 105, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Bourguignon, M.; Piitulainen, H.; Smeds, E.; Zhou, G.; Jousmäki, V.; Hari, R. MEG Insight into the Spectral Dynamics Underlying Steady Isometric Muscle Contraction. J. Neurosci. 2017, 37, 10421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seidler, R.D.; Bernard, J.A.; Burutolu, T.B.; Fling, B.W.; Gordon, M.T.; Gwin, J.T.; Kwak, Y.; Lipps, D.B. Motor Control and Aging: Links to Age-Related Brain Structural, Functional, and Biochemical Effects. Neurosci. Biobehav. Rev. 2010, 34, 721–733. [Google Scholar] [PubMed] [Green Version]
- Salat, D.H.; Buckner, R.L.; Snyder, A.Z.; Greve, D.N.; Desikan, R.S.R.; Busa, E.; Morris, J.C.; Dale, A.M.; Fischl, B. Thinning of the Cerebral Cortex in Aging. Cereb. Cortex 2004, 14, 721–730. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, K.; Raz, N. Age, Sex and Regional Brain Volumes Predict Perceptual-Motor Skill Acquisition. Cortex 2005, 41, 560–569. [Google Scholar] [CrossRef]
- Bastian, A.J.; Martin, T.A.; Keating, J.G.; Thach, W.T. Cerebellar Ataxia: Abnormal Control of Interaction Torques across Multiple Joints. J. Neurophysiol. 1996, 76, 492–509. [Google Scholar] [CrossRef]
- Raz, N.; Lindenberger, U.; Rodrigue, K.M.; Kennedy, K.M.; Head, D.; Williamson, A.; Dahle, C.; Gerstorf, D.; Acker, J.D. Regional Brain Changes in Aging Healthy Adults: General Trends, Individual Differences and Modifiers. Cereb. Cortex 2005, 15, 1676–1689. [Google Scholar] [CrossRef] [Green Version]
- Goble, D.J.; Coxon, J.P.; Wenderoth, N.; van Impe, A.; Swinnen, S.P. Proprioceptive Sensibility in the Elderly: Degeneration, Functional Consequences and Plastic-Adaptive Processes. Neurosci. Biobehav. Rev. 2009, 33, 271–278. [Google Scholar] [CrossRef]
- Kannus, P.; Sievänen, H.; Palvanen, M.; Järvinen, T.; Parkkari, J. Prevention of Falls and Consequent Injuries in Elderly People. Lancet 2005, 366, 1885–1893. [Google Scholar] [CrossRef] [PubMed]
- Roos, P.E.; Dingwell, J.B. Using Dynamic Walking Models to Identify Factors That Contribute to Increased Risk of Falling in Older Adults. Hum. Mov. Sci. 2013, 32, 984–996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomita, H.; Kuno, S.; Kawaguchi, D.; Nojima, O. Limits of Stability and Functional Base of Support While Standing in Community-Dwelling Older Adults. J. Mot. Behav. 2021, 53, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Borysiuk, Z.; Nowicki, T.; Piechota, K.; Błaszczyszyn, M.; Konieczny, M.; Witkowski, M. Movement Patterns and Sensori-Motor Responses: Comparison of Men and Women in Wheelchair Fencing Based on the Polish Paralympic Team. Arch. Budo 2020, 16, 19–26. [Google Scholar]
- Maki, B.E.; McIlroy, W.E. Control of Rapid Limb Movements for Balance Recovery: Age-Related Changes and Implications for Fall Prevention. Age Ageing 2006, 35, 12–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapenta, O.M.; Keller, P.E.; Nozaradan, S.; Varlet, M. Lateralised Dynamic Modulations of Corticomuscular Coherence Associated with Bimanual Learning of Rhythmic Patterns. Sci. Rep. 2022, 12, 6271. [Google Scholar] [CrossRef]
- Grosse, P.; Cassidy, M.J.; Brown, P. EEG-EMG, MEG-EMG and EMG-EMG Frequency Analysis: Physiological Principles and Clinical Applications. Clin. Neurophysiol. 2002, 113, 1523–1531. [Google Scholar] [CrossRef]
- Mima, T.; Toma, K.; Koshy, B.; Hallett, M. Coherence Between Cortical and Muscular Activities After Subcortical Stroke. Stroke 2001, 32, 2597–2601. [Google Scholar] [CrossRef]
- Bayram, M.B.; Siemionow, V.; Yue, G.H. Weakening of Corticomuscular Signal Coupling During Voluntary Motor Action in Aging. J. Gerontol. Ser. A 2015, 70, 1037–1043. [Google Scholar] [CrossRef]
- Konieczny, M.; Pakosz, P.; Witkowski, M. Asymmetrical Fatiguing of the Gluteus Maximus Muscles in the Elite Short-Track Female Skaters. BMC Sports Sci. Med. Rehabil. 2020, 12, 48. [Google Scholar] [CrossRef]
- Pakosz, P.; Domaszewski, P.; Konieczny, M.; Bączkowicz, D. Muscle Activation Time and Free-Throw Effectiveness in Basketball. Sci. Rep. 2021, 11, 7489. [Google Scholar] [CrossRef] [PubMed]
- Nácher, V.; Ledberg, A.; Deco, G.; Romo, R. Coherent Delta-Band Oscillations between Cortical Areas Correlate with Decision Making. Proc. Natl. Acad. Sci. USA 2013, 110, 15085–15090. [Google Scholar] [CrossRef] [Green Version]
- Boonstra, T.W.; Danna-Dos-Santos, A.; Xie, H.B.; Roerdink, M.; Stins, J.F.; Breakspear, M. Muscle Networks: Connectivity Analysis of EMG Activity during Postural Control. Sci. Rep. 2015, 5, 17830. [Google Scholar] [CrossRef] [Green Version]
- Obata, H.; Abe, M.O.; Masani, K.; Nakazawa, K. Modulation between Bilateral Legs and within Unilateral Muscle Synergists of Postural Muscle Activity Changes with Development and Aging. Exp. Brain Res. 2014, 232, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, S.A.; Baker, S.N.; Gant, K.; Bohorquez, J.; Thomas, C.K. Spasms after Spinal Cord Injury Show Low-Frequency Intermuscular Coherence. J. Neurophysiol. 2018, 120, 1765–1771. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Nojima, I.; Sugiura, H.; Yacoubi, B.; Christou, E.A. Voluntary Control of Forward Leaning Posture Relates to Low-Frequency Neural Inputs to the Medial Gastrocnemius Muscle. Gait Posture 2019, 68, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Nojima, I.; Suwa, Y.; Sugiura, H.; Noguchi, T.; Tanabe, S.; Mima, T.; Watanabe, T. Smaller Muscle Mass Is Associated with Increase in EMG–EMG Coherence of the Leg Muscle during Unipedal Stance in Elderly Adults. Hum. Mov. Sci. 2020, 71, 102614. [Google Scholar] [CrossRef]
- Brown, P.; Salenius, S.; Rothwell, J.C.; Hari, R. Cortical Correlate of the Piper Rhythm in Humans. J. Neurophysiol. 1998, 80, 2911–2917. [Google Scholar] [CrossRef]
- Budini, F.; McManus, L.M.; Berchicci, M.; Menotti, F.; Macaluso, A.; di Russo, F.; Lowery, M.M.; de Vito, G. Alpha Band Cortico-Muscular Coherence Occurs in Healthy Individuals during Mechanically-Induced Tremor. PLoS ONE 2014, 9, e115012. [Google Scholar] [CrossRef]
- Ozdemir, R.A.; Contreras-Vidal, J.L.; Paloski, W.H. Cortical Control of Upright Stance in Elderly. Mech. Ageing Dev. 2018, 169, 19–31. [Google Scholar] [CrossRef]
- Hülsdünker, T.; Strüder, H.K.; Mierau, A. Neural Correlates of Expert Visuomotor Performance in Badminton Players. Med. Sci. Sports Exerc. 2016, 48, 2125–2134. [Google Scholar] [CrossRef]
- Błaszczyszyn, M.; Konieczny, M.; Pakosz, P. Analysis of Ankle SEMG on Both Stable and Unstable Surfaces for Elderly and Young Women-A Pilot Study. Int. J. Environ. Res. Public Health 2019, 16, 1544. [Google Scholar] [CrossRef] [Green Version]
- Maki, B.E.; McIlroy, W.E. Postural Control in the Older Adult. Clin. Geriatr. Med. 1996, 12, 635–658. [Google Scholar] [CrossRef]
- Konieczny, M.; Pakosz, P.; Domaszewski, P.; Błaszczyszyn, M.; Kawala-Sterniuk, A. Analysis of Upper Limbs Target-Reaching Movement and Muscle Co-Activation in Patients with First Time Stroke for Rehabilitation Progress Monitoring. Appl. Sci. 2022, 12, 1551. [Google Scholar] [CrossRef]
- Borysiuk, Z.; Konieczny, M.; Kręcisz, K.; Pakosz, P.; Królikowska, B. Effect of Six-Week Intervention Program on Postural Stability Measures and Muscle Coactivation in Senior-Aged Women. Clin. Interv. Aging 2018, 13, 1701–1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juras, G.; Słomka, K.; Fredyk, A.; Sobota, G.; Bacik, B. Evaluation of the Limits of Stability (LOS) Balance Test. J. Hum. Kinet. 2008, 19, 39–52. [Google Scholar] [CrossRef]
- Błaszczyszyn, M.; Borysiuk, Z.; Piechota, K.; Kręcisz, K.; Zmarzły, D. Wavelet Coherence as a Measure of Trunk Stabilizer Muscle Activation in Wheelchair Fencers. BMC Sports Sci. Med. Rehabil. 2021, 13, 140. [Google Scholar] [CrossRef]
- Bączkowicz, D.; Skiba, G.; Falkowski, K.; Domaszewski, P.; Selkow, N. Effects of Immobilization and Re-Mobilization on Knee Joint Arthrokinematic Motion Quality. J. Clin. Med. 2020, 9, 451. [Google Scholar] [CrossRef] [Green Version]
- Degani, A.M.; Leonard, C.T.; Danna-dos-Santos, A. The Use of Intermuscular Coherence Analysis as a Novel Approach to Detect Age-Related Changes on Postural Muscle Synergy. Neurosci. Lett. 2017, 656, 108–113. [Google Scholar] [CrossRef]
- Clark, D.J.; Kautz, S.A.; Bauer, A.R.; Chen, Y.T.; Christou, E.A. Synchronous EMG Activity in the Piper Frequency Band Reveals the Corticospinal Demand of Walking Tasks. Ann. Biomed. Eng. 2013, 41, 1778–1786. [Google Scholar] [CrossRef] [Green Version]
- Chon, J.; Kim, H.S.; Lee, J.H.; Yoo, S.D.; Yun, D.H.; Kim, D.H.; Lee, S.A.; Han, Y.J.; Soh, Y.; Kim, Y.; et al. Association Between Asymmetry in Knee Extension Strength and Balance in a Community-Dwelling Elderly Population: A Cross-Sectional Analysis. Ann. Rehabil. Med. 2018, 42, 113. [Google Scholar] [CrossRef] [PubMed]
- Nakao, H.; Yoshikawa, T.; Mimura, T.; Hara, T.; Nishimoto, K.; Fujimoto, S. Influence of Lower-Extremity Muscle Force, Muscle Mass and Asymmetry in Knee Extension Force on Gait Ability in Community-Dwelling Elderly Women. J. Phys. Ther. Sci. 2006, 18, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, E.H.; Santos, P.F.; Reis, J.G.; Rodrigues, N.C.; Moraes, R.; Abreu, D.C.C. Is There a Relationship between Complaints of Impaired Balance and postural Control Disorder in Community-Dwelling Elderly Women? A Cross-Sectional with the Use of Posturography. Braz. J. Phys. Ther. 2015, 19, 186. [Google Scholar] [CrossRef] [Green Version]
- Marquez, D.C.; von Tscharner, V.; Murari, K.; Nigg, B.M. Development of a Multichannel Current-EMG System for Coherence Modulation with Visual Biofeedback. PLoS ONE 2018, 13, e0206871. [Google Scholar] [CrossRef]
- Holbein-Jenny, M.A.; McDermott, K.; Shaw, C.; Demchak, J. Validity of Functional Stability Limits as a Measure of Balance in Adults Aged 23-73 Years. Ergonomics 2007, 50, 631–646. [Google Scholar] [CrossRef] [PubMed]
- Hortobágyi, T.; Solnik, S.; Gruber, A.; Rider, P.; Steinweg, K.; Helseth, J.; DeVita, P. Interaction between Age and Gait Velocity in the Amplitude and Timing of Antagonist Muscle Coactivation. Gait Posture 2009, 29, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Reinert, S.S.; Kinney, A.L.; Jackson, K.; Diestelkamp, W.; Bigelow, K. Age Stratification and Sample Entropy Analysis Enhance the Limits of Stability Tests for Older Adults. J. Appl. Biomech. 2017, 33, 419–423. [Google Scholar] [CrossRef]
F | p | η²p | |
---|---|---|---|
delta band (0–5 Hz) | |||
Task | 6.78 | 0.013 | 0.14 |
Task × GROUP | 0.39 | 0.536 | 0.01 |
Side | 0.03 | 0.867 | 0.00 |
Side × GROUP | 0.19 | 0.669 | 0.00 |
Task × Side | 0.01 | 0.919 | 0.00 |
Task × Side × GROUP | 0.00 | 0.994 | 0.00 |
GROUP | 0.13 | 0.717 | 0.00 |
beta band (15–35 Hz) | |||
Task | 10.41 | 0.003 | 0.04 |
Task × GROUP | 1.25 | 0.270 | 0.00 |
Side | 0.59 | 0.446 | 0.00 |
Side × GROUP | 0.14 | 0.708 | 0.00 |
Task × Side | 0.45 | 0.509 | 0.00 |
Task × Side × GROUP | 0.08 | 0.774 | 0.00 |
GROUP | 10.60 | 0.002 | 0.21 |
T | p | Cohen’s d | |
---|---|---|---|
R2b | −3.34 | 0.002 | −1.01 |
F | p | η²p | |
---|---|---|---|
task | 5.77 | 0.021 | 0.12 |
task × GROUP | 2.47 | 0.124 | 0.06 |
GROUP | 2.59 | 0.115 | 0.06 |
Group | Mean ± SD | |
---|---|---|
Old | Young | |
R2b | 60.50 ± 17.70 | 81.90 ± 24.20 |
SD qs | 4.41 ± 2.88 | 4.09 ± 1.25 |
SD lean | 4.19 ± 1.36 | 5.40 ± 1.67 |
SOL/R-TIB/R 0–5 Hz qs | 0.53 ± 0.11 | 0.52 ± 0.11 |
SOL/R-TIB/R 0–5 Hz lean | 0.48 ± 0.08 | 0.49 ± 0.12 |
SOL/L -TIB/L 0–5 Hz qs | 0.52 ± 0.10 | 0.54 ± 0.15 |
SOL/L-TIB/L 0–5 Hz lean | 0.47 ± 0.09 | 0.50 ± 0.12 |
SOL/R-TIB/R 15–35 Hz qs | 0.30 ± 0.07 | 0.35 ± 0.07 |
SOL/R-TIB/R 15–35 Hz lean | 0.33 ± 0.04 | 0.36 ± 0.05 |
SOL/L-TIB/L 15–35 Hz qs | 0.30 ± 0.03 | 0.36 ± 0.08 |
SOL/L-TIB/L 15–35 Hz lean | 0.33 ± 0.03 | 0.37 ± 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konieczny, M.; Domaszewski, P.; Skorupska, E.; Borysiuk, Z.; Słomka, K.J. Age-Related Differences in Intermuscular Coherence EMG-EMG of Ankle Joint Antagonist Muscle Activity during Maximal Leaning. Sensors 2022, 22, 7527. https://doi.org/10.3390/s22197527
Konieczny M, Domaszewski P, Skorupska E, Borysiuk Z, Słomka KJ. Age-Related Differences in Intermuscular Coherence EMG-EMG of Ankle Joint Antagonist Muscle Activity during Maximal Leaning. Sensors. 2022; 22(19):7527. https://doi.org/10.3390/s22197527
Chicago/Turabian StyleKonieczny, Mariusz, Przemysław Domaszewski, Elżbieta Skorupska, Zbigniew Borysiuk, and Kajetan J. Słomka. 2022. "Age-Related Differences in Intermuscular Coherence EMG-EMG of Ankle Joint Antagonist Muscle Activity during Maximal Leaning" Sensors 22, no. 19: 7527. https://doi.org/10.3390/s22197527
APA StyleKonieczny, M., Domaszewski, P., Skorupska, E., Borysiuk, Z., & Słomka, K. J. (2022). Age-Related Differences in Intermuscular Coherence EMG-EMG of Ankle Joint Antagonist Muscle Activity during Maximal Leaning. Sensors, 22(19), 7527. https://doi.org/10.3390/s22197527