Optimization Method for Wide Beam Sonar Transmit Beamforming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Transmission Pattern Optimization
2.2. Beampattern Mask Design
- We took the angle interval of that is ;
- We took the sum of the amplitude values of the beampattern in Figure 1: ;
- We manually fine tuned by balancing the amplitude values of so that the “energy’’ approximately matched:
2.3. Convex Optimization
- is the optimization variable.
- is the convex objective function.
- are convex functions.
2.4. Disciplined Convex–Concave Programming (DCCP)
2.5. Iterative-Convex Method
- Choose the design of the desired beampattern and .
- Choose the learning rate .
- Choose the number of iterations i to run. Iterate steps 4–5 for i times.
- Run convex optimization and obtain the new weight vector . The problem is defined as in Equation (9).
- Update as:
2.6. Impact of Quantization Errors
2.7. Evaluation Metrics
- Passband ripple;
- Beamwidth;
- Amplitude deviation.
2.7.1. Passband Ripple
2.7.2. Beamwidth
2.7.3. Amplitude Deviation
2.8. Implementation Details
3. Results
3.1. Experimental Setup
3.2. Rectangular Mask
3.3. Ramp-Shaped Mask
3.4. Quantization Analysis
4. Discussion
- Adjusting the method to work on broadband signals.
- Investigating the influence of the transmission elements experimentally.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knight, W.; Pridham, R.; Kay, S. Digital signal processing for sonar. Proc. IEEE 1981, 69, 1451–1506. [Google Scholar] [CrossRef]
- Urick, R.J. Principles of Underwater Sound, 3rd ed.; McGraw-Hill: New York, NY, USA, 1983. [Google Scholar]
- Van Veen, B.; Buckley, K. Beamforming: A versatile approach to spatial filtering. IEEE ASSP Mag. 1988, 5, 4–24. [Google Scholar] [CrossRef]
- Ogurtsov, S.; Caratelli, D.; Song, Z. A Review of Synthesis Techniques for Phased Antenna Arrays in Wireless Communications and Remote Sensing. Int. J. Antennas Propag. 2021, 2021, 5514972. [Google Scholar] [CrossRef]
- Petillot, Y.; Tena Ruiz, I.; Lane, D. Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking sonar. IEEE J. Ocean. Eng. 2001, 26, 240–251. [Google Scholar] [CrossRef] [Green Version]
- Blondel, P. The Handbook of Sidescan Sonar; Springer: Chichester, UK, 2009; pp. 249–276. [Google Scholar] [CrossRef]
- Hayes, M.P.; Gough, P.T. Synthetic Aperture Sonar: A Review of Current Status. IEEE J. Ocean. Eng. 2009, 34, 207–224. [Google Scholar] [CrossRef]
- Blanford, T.E.; Brown, D.C.; Meyer, R.J. Design considerations for a Compact Correlation Velocity Log. Proc. Meet. Acoust. 2018, 33, 070003. [Google Scholar] [CrossRef] [Green Version]
- Lebret, H.; Boyd, S. Antenna array pattern synthesis via convex optimization. IEEE Trans. Signal Process. 1997, 45, 526–532. [Google Scholar] [CrossRef] [Green Version]
- Somasundaram, S.D.; Parsons, N.H. Evaluation of Robust Capon Beamforming for Passive Sonar. IEEE J. Ocean. Eng. 2011, 36, 686–695. [Google Scholar] [CrossRef]
- Liang, G.l.; Fu, J.; Zhang, K.; Zhang, G.p. Modified MVDR algorithm for DOA estimation using acoustic vector hydrophone. In Proceedings of the 2011 IEEE International Conference on Computer Science and Automation Engineering, Shanghai, China, 10–12 June 2011; Volume 2, pp. 327–330. [Google Scholar] [CrossRef]
- Frost, O. An algorithm for linearly constrained adaptive array processing. Proc. IEEE 1972, 60, 926–935. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef] [Green Version]
- Xenaki, A.; Gerstoft, P.; Mosegaard, K. Compressive beamforming. J. Acoust. Soc. Am. 2014, 136, 260–271. [Google Scholar] [CrossRef] [Green Version]
- Gällström, A.; Rixon Fuchs, L.; Larsson, C. Enhanced sonar image resolution using compressive sensing modelling. In Proceedings of the UACE 2019, Crete, Greece, 30 June–5 July 2019. [Google Scholar]
- Wang, X.; Zhou, Y.; Wang, Y. An Improved Antenna Array Pattern Synthesis Method Using Fast Fourier Transforms. Int. J. Antennas Propag. 2015, 2015, 316962. [Google Scholar] [CrossRef]
- Gershman, A.B.; Sidiropoulos, N.D.; Shahbazpanahi, S.; Bengtsson, M.; Ottersten, B. Convex Optimization-Based Beamforming. IEEE Signal Process. Mag. 2010, 27, 62–75. [Google Scholar] [CrossRef]
- Princeton COS 302, Lecture 22, The Basics of Convex Optimization. 2021. Available online: https://www.cs.princeton.edu/courses/archive/spring21/cos302/ (accessed on 30 August 2022).
- CVXOPT Python Software for Convex Optimization. Available online: http://cvxopt.org/ (accessed on 22 March 2022).
- Gu, B.; Chen, Y.; Liu, X.; Zhou, F.; Jiang, R. Distributed Convex Optimization Compressed Sensing Method for Sparse Planar Array Synthesis in 3-D Imaging Sonar Systems. IEEE J. Ocean. Eng. 2020, 45, 1022–1033. [Google Scholar] [CrossRef]
- Zimmer, C.; Kraus, D.; Theuerkauf, N.; Kummert, A. Transmission Pattern Optimization for Sonar Antennas that suffer under Mutual Transducer Interactions. DAGA, 2017, Kiel. Available online: https://pub.dega-akustik.de/DAGA_2017/data/articles/000227.pdf (accessed on 30 August 2022).
- Tran, T.; Dahl, M.; Claesson, I. A semiinfinite quadratic programming algorithm with applications to channel equalization. In Proceedings of the Seventh International Symposium on Signal Processing and Its Applications, Paris, France, 4 July 2003; Volume 1, pp. 653–656. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Niu, H.; An, K.; Wang, Y.; Zheng, G.; Chatzinotas, S.; Hu, Y. Refracting RIS-Aided Hybrid Satellite-Terrestrial Relay Networks: Joint Beamforming Design and Optimization. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 3717–3724. [Google Scholar] [CrossRef]
- Lin, Z.; An, K.; Niu, H.; Hu, Y.; Chatzinotas, S.; Zheng, G.; Wang, J. SLNR-based Secure Energy Efficient Beamforming in Multibeam Satellite Systems. IEEE Trans. Aerosp. Electron. Syst. 2022, 1–4. [Google Scholar] [CrossRef]
- Lin, Z.; Lin, M.; Wang, J.B.; de Cola, T.; Wang, J. Joint Beamforming and Power Allocation for Satellite-Terrestrial Integrated Networks With Non-Orthogonal Multiple Access. IEEE J. Sel. Top. Signal Process. 2019, 13, 657–670. [Google Scholar] [CrossRef]
- Hasan, M.Z.; Al-Rizzo, H. Beamforming Optimization in Internet of Things Applications Using Robust Swarm Algorithm in Conjunction with Connectable and Collaborative Sensors. Sensors 2020, 20, 2048. [Google Scholar] [CrossRef] [Green Version]
- Abeywickrama, S.; Zhang, R.; Wu, Q.; Yuen, C. Intelligent Reflecting Surface: Practical Phase Shift Model and Beamforming Optimization. IEEE Trans. Commun. 2020, 68, 5849–5863. [Google Scholar] [CrossRef]
- Ivashina, M.V.; Iupikov, O.; Maaskant, R.; van Cappellen, W.A.; Oosterloo, T. An Optimal Beamforming Strategy for Wide-Field Surveys With Phased-Array-Fed Reflector Antennas. IEEE Trans. Antennas Propag. 2011, 59, 1864–1875. [Google Scholar] [CrossRef] [Green Version]
- Boyd, S.; Vandenberghe, L.; Faybusovich, L. Convex Optimization. IEEE Trans. Autom. Control. 2006, 51, 1859. [Google Scholar] [CrossRef]
- Shen, X.; Diamond, S.; Gu, Y.; Boyd, S. Disciplined convex-concave programming. In Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016; pp. 1009–1014. [Google Scholar] [CrossRef] [Green Version]
- Diamond, S.; Boyd, S. CVXPY: A Python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 2016, 17, 1–5. [Google Scholar]
- Pallotta, L.; Farina, A.; Smith, S.T.; Giunta, G. Phase-Only Space-Time Adaptive Processing. IEEE Access 2021, 9, 147250–147263. [Google Scholar] [CrossRef]
- DCCP. Available online: https://github.com/cvxgrp/dccp (accessed on 19 May 2022).
Method/Metric | MAE [dB] | BW [] | PB-Ripple [dB] |
---|---|---|---|
Convex | 5.035 | 31.794 | 6.554 |
DCCP | 2.675 | 24.283 | 5.044 |
Iterative-convex | 1.9164 | 20.278 | 4.475 |
Method/Metric | MAE [dB] | BW [] | PB-Ripple [dB] |
---|---|---|---|
Convex | 4.683 | 63.838 | 6.113 |
DCCP | 2.121 | 58.831 | 3.766 |
Iterative-convex | 0.075 | 58.831 | 0.388 |
Method/Metric | MAE [dB] | BW [] | PB-Ripple [dB] |
---|---|---|---|
Convex | 4.254 | 70.347 | 5.221 |
DCCP | 0.589 | 70.347 | 1.564 |
Iterative-convex | 0.095 | 70.347 | 0.606 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rixon Fuchs, L.; Maki, A.; Gällström, A. Optimization Method for Wide Beam Sonar Transmit Beamforming. Sensors 2022, 22, 7526. https://doi.org/10.3390/s22197526
Rixon Fuchs L, Maki A, Gällström A. Optimization Method for Wide Beam Sonar Transmit Beamforming. Sensors. 2022; 22(19):7526. https://doi.org/10.3390/s22197526
Chicago/Turabian StyleRixon Fuchs, Louise, Atsuto Maki, and Andreas Gällström. 2022. "Optimization Method for Wide Beam Sonar Transmit Beamforming" Sensors 22, no. 19: 7526. https://doi.org/10.3390/s22197526
APA StyleRixon Fuchs, L., Maki, A., & Gällström, A. (2022). Optimization Method for Wide Beam Sonar Transmit Beamforming. Sensors, 22(19), 7526. https://doi.org/10.3390/s22197526