Analysis of GPS/EGNOS Positioning Quality Using Different Ionospheric Models in UAV Navigation
Abstract
:1. Introduction
- Open Service (OS), freely available to any user.
- Safety of Life (SoL) Service, that provides the most stringent level of signal-in-space performance to all Safety of Life user communities.
- EGNOS Data Access Service (EDAS) for users who require enhanced performance for commercial and professional use.
2. Materials and Methods
2.1. Ionospheric Delay
2.2. Smoothing of Code Observations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAA (Federal Aviation Administration). Integration of Civil Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) Roadmap, 2nd ed.; FAA (Federal Aviation Administration): Washington, DC, USA, 2018. [Google Scholar]
- SESAR Joint Undertaking. European ATM Master Plan-Roadmap for the Safe Integration of Drones into All Classes of Airspace; SESAR Joint Undertaking: Brussels, Belgium, 2018. [Google Scholar]
- Wierzbicki, D.; Krasuski, K. Determination the coordinates of the projection center in the digital aerial triangulation using data from Unmanned Aerial Vehicle. Apar. Badaw. Dydakt. 2016, 3, 127–134. (In Polish) [Google Scholar]
- Wierzbicki, D.; Krasuski, K. Determining the Elements of Exterior Orientation in Aerial Triangulation Processing Using UAV Technology. Commun. Sci. Lett. Univ. Zilina 2020, 22, 15–24. [Google Scholar] [CrossRef]
- US Department of Defense. Global Positioning System Standard Positioning Service Performance Standard, 5th ed.; US Department of Defense: Arlington, TX, USA, 2020. [Google Scholar]
- Tomaštík, J.; Mokroš, M.; Surový, P.; Grznárová, A.; Merganič, J. UAV RTK/PPK Method—An Optimal Solution for Mapping Inaccessible Forested Areas? Remote Sens. 2019, 11, 721. [Google Scholar] [CrossRef] [Green Version]
- Forlani, G.; Dall’Asta, E.; Diotri, F.; Cella, U.M.d.; Roncella, R.; Santise, M. Quality Assessment of DSMs Produced from UAV Flights Georeferenced with On-Board RTK Positioning. Remote Sens. 2018, 10, 311. [Google Scholar] [CrossRef] [Green Version]
- Ekaso, D.; Nex, F.; Kerle, N. Accuracy assessment of real-time kinematics (RTK) measurements on unmanned aerial vehicles (UAV) for direct geo-referencing. Geo-Spat. Inf. Sci. 2020, 23, 165–181. [Google Scholar] [CrossRef] [Green Version]
- Ansari, K.; Jamjareegulgarn, P. Effect of Weighted PDOP on Performance of Linear Kalman Filter for RTK Drone Data. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3513504. [Google Scholar] [CrossRef]
- Krasuski, K.; Wierzbicki, D.; Bakuła, M. Improvement of UAV Positioning Performance Based on EGNOS+SDCM Solution. Remote Sens. 2021, 13, 2597. [Google Scholar] [CrossRef]
- Krasuski, K.; Wierzbicki, D. Application the SBAS/EGNOS Corrections in UAV Positioning. Energies 2021, 14, 739. [Google Scholar] [CrossRef]
- ESA Navipedia. Available online: https://gssc.esa.int/navipedia/ (accessed on 6 December 2022).
- GSA. EGNOS Safety of Life (SoL) Service Definition Document, version 3.4; European GNSS Agency: Madrid, Spain, April 2021. [Google Scholar]
- Fahlstrom, P.G.; Gleason, T.J.; Sadraey, M.H. Introduction to UAV Systems; John Wiley & Sons: Chichester, UK, 2022. [Google Scholar]
- Stöcker, C.; Bennett, R.; Nex, F.; Gerke, M.; Zevenbergen, J. Review of the current state of UAV regulations. Remote Sens. 2017, 9, 459. [Google Scholar] [CrossRef] [Green Version]
- Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Christiansen, M.P.; Laursen, M.S.; Jørgensen, R.N.; Skovsen, S.; Gislum, R. Designing and testing a UAV mapping system for agricultural field surveying. Sensors 2017, 17, 2703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwak, J.; Sung, Y. Autonomous UAV flight control for GPS-based navigation. IEEE Access 2018, 6, 37947–37955. [Google Scholar] [CrossRef]
- Patrik, A.; Utama, G.; Gunawan, A.A.S.; Chowanda, A.; Suroso, J.S.; Shofiyanti, R.; Budiharto, W. GNSS-based navigation systems of autonomous drone for delivering items. J. Big Data 2019, 6, 53. [Google Scholar] [CrossRef] [Green Version]
- Gyagenda, N.; Hatilima, J.V.; Roth, H.; Zhmud, V. A review of GNSS-independent UAV navigation techniques. Robot. Auton. Syst. 2022, 152, 104069. [Google Scholar] [CrossRef]
- Zhang, G.; Hsu, L.T. Intelligent GNSS/INS integrated navigation system for a commercial UAV flight control system. Aerosp. Sci. Technol. 2018, 80, 368–380. [Google Scholar] [CrossRef]
- Petritoli, E.; Leccese, F.; Spagnolo, G.S. Inertial Navigation Systems (INS) for Drones: Position Errors Model. In 2020 IEEE 7th International Workshop on Metrology for AeroSpace; IEEE: Piscataway, NJ, USA, 2020; pp. 500–504. [Google Scholar]
- Lu, Y.; Xue, Z.; Xia, G.S.; Zhang, L. A survey on vision-based UAV navigation. Geo. Spat. Inf. Sci. 2018, 21, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Cesetti, A.; Frontoni, E.; Mancini, A.; Zingaretti, P.; Longhi, S. A vision-based guidance system for UAV navigation and safe landing using natural landmarks. J. Intell. Robot. Syst. 2010, 57, 233–257. [Google Scholar] [CrossRef]
- Yoon, H.; Seok, H.; Lim, C.; Park, B. An Online SBAS Service to Improve Drone Navigation Performance in High-Elevation Masked Areas. Sensors 2020, 20, 3047. [Google Scholar] [CrossRef] [PubMed]
- Molina, P.; Colomina, I.; Vitoria, T.; Silva, P.F.; Bandeiras, J.; Stebler, Y.; Skaloud, J.; Kornus, W.; Prades, R.; Aguilera, C. Integrity Aspects of Hybrid EGNOS-based Navigation on Support of Search-And-Rescue Missions with UAVs. In Proceedings of the 24th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2011), Portland, OR, USA, 20–23 September 2011; pp. 3773–3781. [Google Scholar]
- Martins, B.H.; Suzuki, M.; Yastika, P.E.; Shimizu, N. Ground surface deformation detection in complex landslide area—Bobonaro, Timor-Leste—Using SBAS DinSAR, UAV photogrammetry, and field observations. Geosciences 2020, 10, 245. [Google Scholar] [CrossRef]
- Yao, J.; Yao, X.; Liu, X. Landslide Detection and Mapping Based on SBAS-InSAR and PS-InSAR: A Case Study in Gongjue County, Tibet, China. Remote Sens. 2022, 14, 4728. [Google Scholar] [CrossRef]
- Radio Technical Committee for Aeronautics. Minimum Operational Performance Standards for Airborne Equipment Using Global Positioning System/Wide Area Augmentation System, Doc. DO-229D, 2013, with Change 1; Radio Technical Committee for Aeronautics (RTCA): Washington, DC, USA, 2013. [Google Scholar]
- Nie, Z.; Zhou, P.; Liu, F.; Wang, Z.; Gao, Y. Evaluation of Orbit, Clock and Ionospheric Corrections from Five Currently Available SBAS L1 Services: Methodology and Analysis. Remote Sens. 2019, 11, 411. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Yuan, H. Analysis and improvement of ionospheric thin shell model used in SBAS for China region. Adv. Space Res. 2013, 51, 2035–2042. [Google Scholar] [CrossRef]
- Lupsic, B.; Takács, B. Analysis of the EGNOS Ionospheric Model and Its Impact on the Integrity Level in the Central Eastern Europe Region. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Bucharest, Romania, 26–30 August 2019; pp. 159–165. [Google Scholar]
- Sanz, J.; Juan, J.M.; González-Casado, G.; Prieto-Cerdeira, R.; Schlueter, S.; Orús, R. Novel Ionospheric Activity Indicator Specifically Tailored for GNSS Users. In Proceedings of the 27th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS + 2014), Tampa, FL, USA, 8–12 September 2014; 2014; pp. 1173–1182. [Google Scholar]
- Tabti, L.; Kahlouche, S.; Benadda, B.; Beldjilali, B. Improvement of Single-Frequency GPS Positioning Performance Based on EGNOS Corrections in Algeria. J. Navig. 2020, 73, 846–860. [Google Scholar] [CrossRef]
- Olabode, A.; Abe, O.; Cesaroni, C.; Brack, A.; Oluwadare, T.; Nguyen, C.; Schuh, H. EGNOS Performance during Different Space Weather Conditions Over ECAC Region. Copernic. Meet. 2022. [Google Scholar] [CrossRef]
- Llewellyn, S.K.; Bent, R.B. IAFCRL-TR-73-0657; Documentation and Description of the Bent Ionospheric Model. Atlantic Science Corporation: Indialaatic, FL, USA, 1973.
- Ratnam, D.V.; Dabbakuti, J.K.; Lakshmi, N.S. Improvement of Indian-regional Klobuchar ionospheric model parameters for single-frequency GNSS users. IEEE Geosci. Remote Sens. Lett. 2018, 15, 971–975. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Liu, R. A modified Klobuchar-like model of ionosphere delay with consideration for seasons for 45°(N) latitude belt. Chin. Space Sci. Technol. 2019, 39, 30. [Google Scholar]
- Mallika, I.L.; Ratnam, D.V.; Raman, S.; Sivavaraprasad, G. A new ionospheric model for single frequency GNSS user applications using Klobuchar model driven by auto regressive moving average (SAKARMA) method over Indian region. IEEE Access 2020, 8, 54535–54553. [Google Scholar] [CrossRef]
- Bi, T.; An, J.; Yang, J.; Liu, S. A modified Klobuchar model for single-frequency GNSS users over the polar region. Adv. Space Res. 2017, 59, 833–842. [Google Scholar] [CrossRef]
- Dunn, M.J.; Disl, D. IS-GPS-200; Global Positioning System Directorate Systems Engineering & Integration Interface Specification IS-GPS-200. Global Positioning Systems Directorate: Los Angeles, CA, USA, 2012.
- CSNO. BeiDou Navigation Satellite System Signal in Space Interface Control Document—Open Service Signal B1I, Version 3.0; China Satellite Navigation Office: Lanzhou, China, 2019. [Google Scholar]
- Hochegger, G.; Nava, B.; Radicella, S.; Leitinger, R. A family of ionospheric models for different uses. Phys. Chem. Earth 2000, 25, 295–299. [Google Scholar] [CrossRef]
- Kotova, D.S.; Ovodenko, V.B.; Yasyukevich, Y.V.; Klimenko, M.V.; Mylnikova, A.A.; Kozlovsky, A.E.; Gusakov, A.A. Correction of IRI-Plas and NeQuick empirical ionospheric models at high latitudes using data from the remote receivers of global navigation satellite system signals. Russ. J. Phys. Chem. B. 2018, 12, 776–781. [Google Scholar] [CrossRef]
- Pignalberi, A.; Pezzopane, M.; Themens, D.R.; Haralambous, H.; Nava, B.; Coïsson, P. On the Analytical Description of the Topside Ionosphere by NeQuick: Modeling the Scale Height Through COSMIC/FORMOSAT-3 Selected Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1867–1878. [Google Scholar] [CrossRef]
- Aragon-Angel, A.; Zürn, M.; Rovira-Garcia, A. Galileo ionospheric correction algorithm: An optimization study of NeQuick-G. Radio Sci. 2019, 54, 1156–1169. [Google Scholar] [CrossRef]
- Prieto-Cerdeira, R.; Orús-Pérez, R.; Breeuwer, E.; Lucas-Rodriguez, R.; Falcone, M. The European way: Performance of the Galileo single-frequency ionospheric correction during in-orbit validation. GPS World 2014, 25, 53–58. [Google Scholar]
- European Commission. European GNSS (Galileo) Open Service—Ionospheric Correction Algorithm for Galileo Single Frequency Users; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Zhang, X.; Huang, P. Optimal Hatch Filter with an adaptive smoothing time based on SBAS. In Proceedings of the 2nd International Conference on Soft Computing in Information Communication Technology, Taipei, Taiwan, 31 May–1 June 2014; pp. 34–38. [Google Scholar]
- Ciećko, A. Analysis of the EGNOS quality parameters during high ionosphere activity. IET Radar Sonar Navig. 2019, 13, 1131–1139. [Google Scholar] [CrossRef]
- Ciećko, A.; Bakuła, M.; Grunwald, G.; Ćwiklak, J. Examination of Multi-Receiver GPS/EGNOS Positioning with Kalman Filtering and Validation Based on CORS Stations. Sensors 2020, 20, 2732. [Google Scholar] [CrossRef]
No Smooth. | Smooth. 100 s, 5 s | Smooth. 100 s, 60 s | No Smooth. | Smooth. 100 s, 5 s | Smooth. 100 s, 60 s | ||||
---|---|---|---|---|---|---|---|---|---|
BeiDou Klob. | HPE_max | 3.85 | 2.90 | 3.14 | BeiDou Klob. | VPE_max | 7.86 | 6.19 | 8.88 |
HPE_st.dev. | 0.50 | 0.32 | 0.37 | VPE_st.dev. | 0.92 | 0.62 | 0.80 | ||
HPE_mean | 1.70 | 1.73 | 1.70 | VPE_mean | 4.41 | 4.45 | 4.43 | ||
GPS Klob. | HPE_max | 2.94 | 2.27 | 2.71 | GPS Klob. | VPE_max | 6.58 | 5.30 | 3.87 |
HPE_st.dev. | 0.35 | 0.19 | 0.18 | VPE_st.dev. | 0.78 | 0.44 | 0.42 | ||
HPE_mean | 1.35 | 1.34 | 1.33 | VPE_mean | 2.82 | 2.78 | 2.77 | ||
NeQuick | HPE_max | 2.62 | 2.57 | 2.88 | NeQuick | VPE_max | 7.87 | 5.91 | 8.33 |
HPE_st.dev. | 0.44 | 0.26 | 0.27 | VPE_st.dev. | 0.88 | 0.55 | 0.68 | ||
HPE_mean | 1.42 | 1.43 | 1.42 | VPE_mean | 4.37 | 4.41 | 4.40 | ||
EGNOS | HPE_max | 3.01 | 1.50 | 1.32 | EGNOS | VPE_max | 3.85 | 2.22 | 3.84 |
HPE_st.dev. | 0.35 | 0.19 | 0.17 | VPE_st.dev. | 0.66 | 0.45 | 0.49 | ||
HPE_mean | 0.50 | 0.36 | 0.34 | VPE_mean | 1.02 | 0.95 | 0.96 | ||
No corr. | HPE_max | 3.76 | 2.90 | 3.27 | No corr. | VPE_max | 10.59 | 9.16 | 12.03 |
HPE_st.dev. | 0.52 | 0.35 | 0.40 | VPE_st.dev. | 0.97 | 0.69 | 0.91 | ||
HPE_mean | 1.66 | 1.68 | 1.66 | VPE_mean | 7.20 | 7.24 | 7.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grunwald, G.; Ciećko, A.; Kozakiewicz, T.; Krasuski, K. Analysis of GPS/EGNOS Positioning Quality Using Different Ionospheric Models in UAV Navigation. Sensors 2023, 23, 1112. https://doi.org/10.3390/s23031112
Grunwald G, Ciećko A, Kozakiewicz T, Krasuski K. Analysis of GPS/EGNOS Positioning Quality Using Different Ionospheric Models in UAV Navigation. Sensors. 2023; 23(3):1112. https://doi.org/10.3390/s23031112
Chicago/Turabian StyleGrunwald, Grzegorz, Adam Ciećko, Tomasz Kozakiewicz, and Kamil Krasuski. 2023. "Analysis of GPS/EGNOS Positioning Quality Using Different Ionospheric Models in UAV Navigation" Sensors 23, no. 3: 1112. https://doi.org/10.3390/s23031112
APA StyleGrunwald, G., Ciećko, A., Kozakiewicz, T., & Krasuski, K. (2023). Analysis of GPS/EGNOS Positioning Quality Using Different Ionospheric Models in UAV Navigation. Sensors, 23(3), 1112. https://doi.org/10.3390/s23031112