Real-Time Non-Contact Millimeter Wave Radar-Based Vital Sign Detection
Abstract
:1. Introduction
2. Analysis of mm-Wave Radar Detection Principles
2.1. Principle of Operation of Doppler Transceiver
2.2. Biological Basis of Vital Signs Monitoring
2.3. Constant False Alarm Rate Monitoring for Biological Signal
3. Targeted Frequency Detection Algorithm
3.1. Thoracic Motion Target Detection
3.2. Moving Target Display Algorithm
3.3. Vital Sign Spectrum Extraction Algorithm
3.3.1. Target Signal Pre-Processing
3.3.2. Vital Sign Phase Detection Method
3.3.3. Moving Target Indication (MTI) Filter Designed Algorithm
4. Results and Discussion
4.1. Validation Environment
4.2. Results and Analysis of the Detection Module
4.2.1. Threshold Detection
4.2.2. Moving Target Detection
4.2.3. Overall Module
4.3. Signal Data Detection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caro, C.; Bloice, J. Contactless apnoea detector based on radar. Lancet 1971, 298, 959–961. [Google Scholar] [CrossRef]
- Franks, C. Contactless respiration monitoring of infants. Med. Biol. Eng. 1976, 14, 306–312. [Google Scholar] [CrossRef]
- Vander, A.; Sherman, J.; Luciano, D. Human Physiology: The Mechanisms of Body Function, 7th ed.; McGraw Hill: San Francisco, CA, USA, 1998. [Google Scholar]
- Li, C.; Lubecke, V.M.; Lubecke, O.B.; Lin, J. A review on recent advances in doppler radar sensors for noncontact healthcare monitoring. IEEE Trans. Microw. Theory Tech. 2013, 61, 2046–2060. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Zhu, Z.; Huangfu, J.; Li, C.; Ran, L. 1-D microwave imaging of human cardiacmotion: An ab-initio investigation. IEEE Trans. Microw. Theory Tech. 2013, 61, 2101–2107. [Google Scholar] [CrossRef]
- Massagram, W.; Lubecke, V.M.; Madsen, A.H.; Lubecke, O.B. Assessment of heart rate variability and respiratory sinus arrhythmia via Doppler radar. IEEE Trans. Microw. Theory Tech. 2009, 57, 2542–2549. [Google Scholar] [CrossRef]
- Li, C.; Lin, J.; Xiao, Y. Robust overnight monitoring of human vital signs by a non-contact respiration and heartbeat detector. In Proceedings of the 2006 28th International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 2235–2238. [Google Scholar]
- Hu, W.; Zhao, Z.; Wang, Y.; Zhang, H.; Lin, F. Noncontact accurate measurement of cardiopulmonary activity using a compact quadrature Doppler radar sensor. IEEE Trans. Biomed. Eng. 2014, 61, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T. Feature-based correlation and topological similarity for interbeat interval estimation using ultrawideband radar. IEEE Trans. Biomed. Eng. 2016, 63, 747–757. [Google Scholar]
- Droitcour, A.D.; Lubecke, O.B.; Lubecke, V.M.; Lin, J.; Kovacs, G.T.A. Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring. IEEE Trans. Microw. Theory Tech. 2004, 52, 838–848. [Google Scholar] [CrossRef]
- Droitcour, A.D.; Lubecke, O.B.; Lubecke, V.M.; Lin, J. 0.25/spl mu/m CMOS and BiCMOS single-chip direct-conversion Doppler radars for remote sensing of vital signs. In Proceedings of the 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315), San Francisco, CA, USA, 7 February 2002; Volume 1, pp. 348–349. [Google Scholar]
- Li, C.; Yu, X.; Lee, C.M.; Li, D.; Ran, L.; Lin, J. High-sensitivity software-configurable 5.8-GHz radar sensor receiver chip in 0.13-m CMOS for noncontact vital sign detection. IEEE Trans. Microw. Theory Tech. 2010, 58, 1410–1419. [Google Scholar]
- Singh, A.; Lubecke, V. A heterodyne receiver for harmonic Doppler radar cardiopulmonary monitoring with body-worn passive RF tags. In Proceedings of the 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 23–28 May 2010; pp. 1600–1603. [Google Scholar]
- Droitcour, A. A microwave radio for Doppler radar sensing of vital signs. In Proceedings of the 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157), Phoenix, AZ, USA, 20–24 May 2001; Volume 1, pp. 175–178. [Google Scholar]
- Yanming, X.; Jenshan, L.; Lubecke, O.B.; Lubecke, V.M. A kaband low power Doppler radar system for remote detection of cardiopulmonary motion. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2006; pp. 7151–7154. [Google Scholar]
- Nosrati, M.; Tavassolian, N. High-accuracy heart rate variability monitoring using Doppler radar based on gaussian pulse train modeling and FTPR algorithm. IEEE Trans. Microw. Theory Tech. 2018, 68, 556–567. [Google Scholar] [CrossRef]
- Nosrati, M.; Tavassolian, N. Accurate Doppler radar-based cardiopulmonary sensing using chest-wall acceleration. IEEE Trans. Biomed. Eng. 2019, 3, 41–47. [Google Scholar] [CrossRef]
- Ville, D.V.D.; Philips, W.; Lemahieu, I. On the N-dimensional extension of the discrete prolate spheroidal window. IEEE Signal Process. Lett. 2002, 9, 89–91. [Google Scholar] [CrossRef]
- Gu, C.; Li, C.; Lin, J.; Long, J.; Huangfu, J.; Ran, L. Instrument-based noncontact Doppler radar vital sign detection system using heterodyne digital quadrature demodulation architecture. IEEE Trans. Instrum. Meas. 2010, 59, 1580–1588. [Google Scholar]
- Jachan, M.; Matz, G.; Hlawatsch, F. Time-frequency ARMA models and parameter estimators for underspread nonstationary random processes. IEEE Trans. Signal Process. 2007, 55, 4366–4381. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.M.A.T.; Amindavar, H.; Ritcey, J.A. A new velocity detector in ultra-wideband radar. In Proceedings of the 2014 IEEE Radar Conference, Cincinnati, OH, USA, 19–23 May 2014; pp. 1057–1060. [Google Scholar]
- Hosseini, S.M.A.T.; Amindavar, H.; Ritcey, J.A. A new cyclostationary spectrum sensing approach in cognitive radio. In Proceedings of the 2010 IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Marrakech, Morocco, 20–23 June 2010; pp. 1–4. [Google Scholar]
- Bakhtiari, S.; Liao, S.; Elmer, T.; Gopalsami, N.S.; Raptis, A.C. A real-time heart rate analysis for a remote millimeter wave I-Q sensor. IEEE Trans. Biomed. Eng. 2011, 58, 1839–1845. [Google Scholar] [CrossRef]
- Park, B.K. Center tracking quadrature demodulation for a Doppler radar motion detector. In Proceedings of the 2007 IEEE/MTT-S International Microwave Symposium, Honolulu, HI, USA, 3–8 June 2007; pp. 1323–1326. [Google Scholar]
- Lvarez, J.L.R.; Perez, O.B.; Jimenez, I.M.; Everss, E.; Gonzalez, A.B.R.; Alberola, A.G. Heart rate turbulence denoising using support vector machines. IEEE Trans. Biomed. Eng. 2009, 56, 310–319. [Google Scholar]
- Li, C.; Lin, J. Non-contact measurement of periodic movements by a 22–40 GHz radar sensor using nonlinear phase modulation. In Proceedings of the 2007 IEEE/MTT-S International Microwave Symposium, Honolulu, HI, USA, 3–8 June 2007; pp. 579–582. [Google Scholar]
- Lu, L.; Li, C.; Rice, J.A. A software-defined multifunctional radar sensor for linear and reciprocal displacement measurement. In Proceedings of the 2011 IEEE Topical Conference on Wireless Sensors and Sensor Networks, Phoenix, AZ, USA, 16–19 January 2011; pp. 17–20. [Google Scholar]
- Singh, A.; Gao, X.; Yavari, E.; Zakrzewski, M.; Cao, X.H.; Lubecke, V.M.; Boric-Lubecke, O. Data-based quadrature imbalance compensation for a CW Doppler radar system. IEEE Trans. Microw. Theory Tech. 2013, 61, 1718–1724. [Google Scholar] [CrossRef]
- Gao, X.; Singh, A.; Yavari, E.; Lubecke, V.M.; Lubecke, O.B. Non-contact displacement estimation using Doppler radar. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 1602–1605. [Google Scholar]
- Gao, X.; Lubecke, O.B. AC coupled quadrature Doppler radar displacement estimation. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015; pp. 1–4. [Google Scholar]
- Xu, J.; Gao, X.; Padasdao, B.; Lubecke, O.B. Estimation of physiological sub-millimeter displacement with CW Doppler radar. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 7602–7605. [Google Scholar]
- Gao, X.; Lubecke, O.B. Radius correction technique for doppler radar noncontact periodic displacement measurement. IEEE Trans. Microw. Theory Tech. 2017, 65, 621–631. [Google Scholar] [CrossRef]
- Iyer, S.; Zhao, L.; Mohan, M.P.; Jimeno, J.; Siyal, M.Y.; Alphones, A.; Karim, M.F. mm-wave radar-based vital signs monitoring and arrhythmia detection using machine learning. Sensors 2022, 22, 3106. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yoo, S.; Cho, S.H. Experimental comparison of IR-UWB radar and FMCW radar for vital signs. Sensors 2020, 20, 6695. [Google Scholar] [CrossRef] [PubMed]
- Leem, S.K.; Khan, F.; Cho, S.H. Vital sign monitoring and mobile phone usage detection using IR-UWB radar for intended use in car crash prevention. Sensors 2017, 17, 1240. [Google Scholar] [CrossRef] [PubMed]
Life Activity | Frequency (Hz) | Thoracic Displacement (mm) |
---|---|---|
Heartbeat | 0.6–2 | 0.15–0.5 |
Respiration | 0.1–0.5 | 0.01–0.15 |
Heart Rate (Beats per Minute) | Respiratory Rate (Breaths per Minute) | |||||
---|---|---|---|---|---|---|
S. No. | MM-Wave Radar Measurement Results | Sports Bracelets | Relative Error | MM-Wave Radar Measurement Results | Sports Bracelets | Relative Error |
1 | 69 | 71 | 2.8% | 14 | 14 | 0% |
2 | 69 | 72 | 4.2% | 16 | 15 | 6.7% |
3 | 72 | 75 | 4% | 16 | 17 | 5.9% |
4 | 76 | 74 | 2.7% | 19 | 21 | 9.5% |
5 | 85 | 80 | 6.3% | 19 | 20 | 5.0% |
6 | 66 | 70 | 5.7% | 21 | 23 | 8.7% |
7 | 71 | 74 | 4.1% | 22 | 22 | 0% |
8 | 80 | 80 | 0% | 24 | 24 | 0% |
9 | 97 | 101 | 4.0% | 17 | 18 | 5.6% |
10 | 111 | 106 | 4.7% | 21 | 20 | 5.0% |
11 | 70 | 71 | 1.4% | 22 | 23 | 4.3% |
12 | 81 | 85 | 4.7% | 24 | 23 | 4.3% |
13 | 92 | 89 | 3.4% | 18 | 19 | 5.3% |
14 | 105 | 101 | 4.0% | 27 | 26 | 3.8% |
15 | 109 | 112 | 2.7% | 30 | 29 | 3.4% |
References | Frequency (GHz) | Method | Sampling Frequency | Target Periodic Motion Frequency (Hz) | Displacement Estimation Range (mm) | Average Error Range in Displacement Estimated (%) |
---|---|---|---|---|---|---|
[26] | 40 | Complex signal demodulation (center estimation, circle fitting method) | N/A | 0.33 | 2 | 2.3–2.8 |
[27] | 5.46 | Complex signal demodulation | N/A | 0.6 | 0.3–1 | 0.6–11.7 |
[28] | 2.4 | Center estimation w/IC | N/A | 1.0 | 10–40 | 2–7.5 |
[29] | 2.4 | Center estimation w/IC + RC (DC coupled) | 1 kHz | 0.3 | 10–40 | 0.14–0.27 |
[30] | 2.4 | Center estimation w/IC + RC (AC coupled) | N/A | 0.3 | 4–12 | 0.01–2.08 |
[31] | 2.4 | Center estimation w/RC (DC coupled) | 1 kHz | 1.0 | 0.1–1 | 0. 13–3.88 |
[32] | 2.4 | Center estimation w/IC + RC (DC coupled) | N/A | 0.2 | 4–12 | 0.01–2.63 |
[33] | 77 | Complex signal demodulation (FFT, machine learning) | 5 Hz | 2 | 0–5 | 3.85 |
[34] | 8.7 | Complex signal demodulation (FFT, MTI, window) | 5.5 MHz | N/A | 0.5–2.5 | 5 |
[35] | 6.8 | Complex signal demodulation (FFT, correlation method) | 110 Hz | 0.5 | N/A | 1.3 (heart rate)/1.2 (respiratory rate) |
This work | 24 | Complex signal demodulation (FFT, MTI, CFAR, window) | 65 MHz | 0.3 | 100–500 | 0–6.3(heart rate)/0–9.5 (respiratory rate) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Ali, L.; Wang, C.; Liu, R.; Wang, C.; Qian, C.; Sung, H.; Meng, F. Real-Time Non-Contact Millimeter Wave Radar-Based Vital Sign Detection. Sensors 2022, 22, 7560. https://doi.org/10.3390/s22197560
Gao Z, Ali L, Wang C, Liu R, Wang C, Qian C, Sung H, Meng F. Real-Time Non-Contact Millimeter Wave Radar-Based Vital Sign Detection. Sensors. 2022; 22(19):7560. https://doi.org/10.3390/s22197560
Chicago/Turabian StyleGao, Zhiqiang, Luqman Ali, Cong Wang, Ruizhi Liu, Chunwei Wang, Cheng Qian, Hokun Sung, and Fanyi Meng. 2022. "Real-Time Non-Contact Millimeter Wave Radar-Based Vital Sign Detection" Sensors 22, no. 19: 7560. https://doi.org/10.3390/s22197560
APA StyleGao, Z., Ali, L., Wang, C., Liu, R., Wang, C., Qian, C., Sung, H., & Meng, F. (2022). Real-Time Non-Contact Millimeter Wave Radar-Based Vital Sign Detection. Sensors, 22(19), 7560. https://doi.org/10.3390/s22197560