Performance Evaluation of Adaptive Tracking Techniques with Direct-State Kalman Filter †
Abstract
:1. Introduction
2. Tracking Scheme of Direct-State Kalman Filter
2.1. Standard Scalar Tracking Loop
2.2. Direct-State Kalman Filter
2.3. Process and Measurement Noise Covariance Matrix
2.4. Steady-State Analysis
2.5. Equivalent Noise Bandwidth
2.6. LUT-DSKF
3. Adaptive Techniques in DSKF
3.1. -Based DSKF
3.2. LBCA-Based DSKF
3.3. LBCA-Based LUT-DSKF
4. Experimental Setup
4.1. Receiver and Algorithm Implementation
4.1.1. -Based DSKF Configuration
4.1.2. LBCA-Based DSKF and LUT-DSKF Configuration
4.2. Performance Metric
4.3. Evaluation Setup
5. Results
5.1. Static Scenario
5.2. Dynamic Scenario
5.3. Total System Performance
5.4. Complexity
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADC | analog-to-digital converter |
BET | backward Euler transform |
carrier-to-noise density ratio | |
CRB | Cramér-Rao bound |
DARE | discrete algebraic Riccati equation |
DLL | delay locked loop |
DSKF | direct-state Kalman filter |
ESKF | error-state Kalman-filter |
FAB | fast adaptive bandwidth |
FLL | frequency locked loop |
FPGA | field-programmable gate array |
GNSS | global navigation satellite system |
GPS | Global Positioning System |
IIR | infinite impulse response |
KF | Kalman filter |
LBCA | loop-bandwidth control algorithm |
LOS | line-of-sight |
LUT | lookup table |
MMSE | minimum mean square error |
NCO | numerically controlled oscillator |
PLAN | piecewise linear approximation of nonlinearities |
PLI | phase-lock indicator |
PLL | phase locked loop |
PVT | position, velocity, and time |
RFCS | radio-frequency constellation simulator |
RFFE | radio-frequency front-end |
SSM | state space model |
STL | scalar tracking loop |
SV | satellite vehicle |
References
- Kaplan, E.D.; Hegarty, C.J. Understanding GPS: Principles and Applications, 2nd ed.; Artech House Mobile Communications Series; Artech House: Norwood, MA, USA, 2006. [Google Scholar]
- Van Dierendonck, A.J. GPS Receivers. In Global Positioning System: Theory and Applications; American Institute of Aeronautics and Astronautics, AJ Systems: Los Altos, CA, USA, 1996; Volume 1. [Google Scholar] [CrossRef]
- Won, J.; Pany, T. Signal Processing. In Springer Handbook of Global Navigation Satellite Systems; Springer International Publishing: Cham, Switzerland, 2017; pp. 401–442. [Google Scholar] [CrossRef]
- Jade Morton, Y.T.; Yang, R.; Breitsch, B. GNSS Receiver Signal Tracking. In Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications; Wiley-IEEE Press, University of Colorado Boulder: Hoboken, NJ, USA, 2021; Volume 1. [Google Scholar]
- Jwo, D.J. Optimisation and sensitivity analysis of GPS receiver tracking loops in dynamic environments. IEE Proc. Radar Sonar Navig. 2001, 148, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Gardner, F.M. Phaselock Techniques, 3rd ed.; Wiley: New York, NY, USA, 2005. [Google Scholar]
- Cortés, I.; van der Merwe, J.R.; Nurmi, J.; Rügamer, A.; Felber, W. Evaluation of adaptive loop-bandwidth tracking techniques in GNSS receivers. Sensors 2021, 21, 502. [Google Scholar] [CrossRef]
- López-Salcedo, J.A.; Peral-Rosado, J.A.D.; Seco-Granados, G. Survey on robust carrier tracking techniques. IEEE Commun. Surv. Tutor. 2014, 12, 670–688. [Google Scholar] [CrossRef]
- Vilà-Valls, J.; Linty, N.; Closas, P.; Dovis, F.; Curran, J.T. Survey on signal processing for GNSS under ionospheric scintillation: Detection, monitoring, and mitigation. Navigation 2020, 67, 511–536. [Google Scholar] [CrossRef]
- Driessen, P.F. DPLL bit synchronizer with rapid acquisition using adaptive Kalman filtering techniques. IEEE Trans. Commun. 1994, 42, 2673–2675. [Google Scholar] [CrossRef]
- Gelb, A. The Analytic Sciences Corporation. In Applied Optimal Estimation; The MIT Press: Cambridge, MA, USA, 1974. [Google Scholar]
- Thacker, N.A.; Lacey, A.J. Tutorial: The Likelihood Interpretation of the Kalman Filter; Tina Memo; University of Manchester: Manchester, UK, 2006. [Google Scholar]
- Vilà-Valls, J.; Closas, P.; Navarro, M.; Fenández-Prades, C. Are PLLs dead? A tutorial on Kalman filter-based techniques for digital carrier synchronization. IEEE Aerosp. Electron. Syst. 2017, 32, 28–45. [Google Scholar] [CrossRef]
- Won, J.H.; Dötterböck, D.; Eissfeller, B. Performance comparison of different forms of Kalman filter approaches for a vector-based GNSS signal tracking loop. Navigation 2010, 57, 185–199. [Google Scholar] [CrossRef]
- Won, J.-H.; Pany, T.; Eissfeller, B. Characteristics of Kalman filters for GNSS signal tracking loop. IEEE Aerosp. Electron. Syst. 2012, 48, 3671–3681. [Google Scholar] [CrossRef]
- O’Driscoll, C.; Lachapelle, G. Comparison of traditional and Kalman filter based tracking architectures. In Proceedings of the 2009 European Navigation Conference (ENC), Warsaw, Poland, 3–6 May 2009. [Google Scholar]
- O’Driscoll, C.; Petovello, M.; Lachapelle, G. Choosing the coherent integration time for Kalman filter based carrier phase tracking of GNSS signals. GPS Solut. 2011, 15, 345–356. [Google Scholar] [CrossRef]
- Tang, X.; Falco, G.; Falletti, E.; Lo Presti, L. Theoretical analysis and tuning criteria of the Kalman filter-based tracking loop. GPS Solut. 2014, 19, 489–503. [Google Scholar] [CrossRef]
- Tang, X.; Falco, G.; Falletti, E.; Lo Presti, L. Complexity reduction of the Kalman filter-based tracking loops in GNSS receivers. GPS Solut. 2017, 21, 685–699. [Google Scholar] [CrossRef]
- Cortés, I.; Marín, P.; van der Merwe, J.R.; Lohan, E.S.; Nurmi, J.; Felber, W. Adaptive techniques in scalar tracking loops with direct-state Kalman-filter. In Proceedings of the 2021 International Conference on Localization and GNSS (ICL-GNSS), Tampere, Finland, 1–3 June 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Vilà-Valls, J.; Closas, P.; Fenández-Prades, C. On the identifiability of noise statistics and adaptive KF design for robust GNSS carrier tracking. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2015; pp. 1–10. [Google Scholar] [CrossRef]
- Duník, J.; Straka, O.; Kost, O.; Havlík, J. Noise covariance matrices in state-space models: A survey and comparison of estimation methods—Part I. Int. J. Adapt. Con. Sig. Proc. 2017, 31, 1505–1543. [Google Scholar] [CrossRef]
- Bolla, P. Advanced Tracking Loop Architectures for Multi-Frequency GNSS Receiver. Ph.D. Thesis, Tampere University of Technology, Tampere, Finland, 2018. [Google Scholar]
- Won, J.W.; Eissfiller, B. A tuning method based on signal-to-noise power ratio for adaptive PLL and its relationship with equivalent noise bandwidth. IEEE Commun. Lett. 2013, 17, 393–396. [Google Scholar] [CrossRef]
- Won, J.H. A novel adaptive digital phase-lock-loop for modern digital GNSS receivers. IEEE Commun. Lett. 2014, 18, 46–49. [Google Scholar] [CrossRef]
- Susi, M.; Borio, D. Kalman filtering with noncoherent integrations for Galileo E6-B tracking. Navigation 2020, 67, 601–618. [Google Scholar] [CrossRef]
- Song, Q.; Liu, R. Weighted adaptive filtering algorithm for carrier tracking of deep space signal. Chin. J. Aerosp. 2015, 28, 1236–1244. [Google Scholar] [CrossRef] [Green Version]
- Cortes, I.; Van der Merwe, J.R.; Rügamer, A.; Felber, W. Adaptive loop-bandwidth control algorithm for scalar tracking loops. In Proceedings of the 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS), Portland, OR, USA, 20–23 April 2020; pp. 1178–1188. [Google Scholar] [CrossRef]
- Overbeck, M.; Garzia, F.; Popugaev, A.; Kurz, O.; Forster, F.; Felber, W.; Ayaz, A.S.; Ko, S.; Eissfeller, B. GOOSE-GNSS Receiver with an open software interface. In Proceedings of the 28th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2015), Tampa, FL, USA, 14–18 September 2015. [Google Scholar]
- Jury, E.I. Theory and Application of the Z-Transform Method; Wiley: New York, NY, USA, 1964. [Google Scholar]
- Gajic, Z. Linear Dynamic Systems and Signals; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Reid, I.; Term, H. Estimation II. Available online: https://www.robots.ox.ac.uk/~ian/Teaching/Estimation/LectureNotes2.pdf (accessed on 14 December 2020).
- Kay, S.M. Fundamentals of Statistical Signal Processing: Estimation Theory; Prentice-Hall Signal Processing Series; Prentice Hall: Upper Saddle River, NJ, USA, 1993; Volume 1. [Google Scholar]
- Betz, J.W.; Kolodziejski, K.R. Generalized theory of code tracking with an early-late discriminator Part I: Lower bound and coherent processing. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 1538–1556. [Google Scholar] [CrossRef]
- D’Andrea, A.N.; Mengali, U.; Reggiannini, R. The modified Cramer-Rao bound and its application to synchronization problems. IEEE Trans. Commun. 1994, 42, 1391–1399. [Google Scholar] [CrossRef]
- Einicke, G. Smoothing, Filtering and Prediction: Estimating the Past, Present and Future; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Brown, R.G.; Hwang, P.Y.C. Introduction to Random Signals and Applied Kalman Filtering: With MATLAB Exercises and Solutions, 3rd ed.; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 8th ed.; Elsevier: Waltham, MA, USA, 2014. [Google Scholar]
- Stephens, S.; Thomas, J. Controlled-root formulation for digital phase-locked loops. IEEE Trans. Aerosp. Electron. Syst. 1995, 31, 78–95. [Google Scholar] [CrossRef]
- Mao, W.L.; Chen, A.B. Mobile GPS carrier phase tracking using a novel intelligent dual-loop receiver. Int. J. Satell. Commun. Netw. 2008, 26, 119–139. [Google Scholar] [CrossRef]
- Beaulieu, N.C.; Toms, A.S.; Pauluzzi, D.R. Comparison of four SNR estimators for QPSK modulations. IEEE Commun. Lett. 2000, 4, 43–45. [Google Scholar] [CrossRef]
- Falletti, E.; Pini, M.; Presti, L.L. Low complexity carrier-to-noise ratio estimators for GNSS digital receivers. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 420–437. [Google Scholar] [CrossRef]
- Seybold, J. GOOSE: Open GNSS Receiver Platform; Technical Report; TeleOrbit GmbH: Nuremberg, Germany, 2021; Available online: https://teleorbit.eu/en/satnav/ (accessed on 14 December 2020).
- Domingos, P. The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World; Basic Books, Inc.: New York, NY, USA, 2018. [Google Scholar]
- Robust Tracking Techniques Dataset Using GOOSE Receiver. Available online: https://owncloud.fraunhofer.de/index.php/s/LGoWPVtV5xbQ9mB (accessed on 14 December 2020).
- Josuttis, N.M. The C++ Standard Library: A Tutorial and Reference, 2nd ed.; Addison-Wesley Professional: Boston, MA, USA, 2012. [Google Scholar]
- OProfile Manual. Available online: https://oprofile.sourceforge.io/doc/index.html (accessed on 14 December 2020).
- Taskset(1)—Linux Manual Page. Available online: https://man7.org/linux/man-pages/man1/taskset.1.html (accessed on 14 December 2020).
Tracking | Configuration | Label | ||
---|---|---|---|---|
Technique | Static | Dynamic | ||
-based DSKF | , | 0.910 | 0.535 | |
, | 0.909 | 0.538 | ||
LBCA-based DSKF | , | 0.877 | 0.583 | |
LBCA-based LUT-DSKF | , | 0.912 | 0.628 | |
LBCA-based PLL | , | 0.911 | 0.627 |
Tracking | Sub- | Added Number of Operations: | ||
---|---|---|---|---|
Technique | Module | Additions | Multiplications | Divisions |
-based DSKF | Error Cov. Prediction (17) | 27 | 18 | - |
Kalman Gain Calculation (20) and (21) | 1 | 3 | 1 | |
Error Cov. Update (23) | 9 | 9 | - | |
Measurement Noise Cov. (30) | 1 | 5 | 2 | |
Total | 38 | 35 | 3 | |
LBCA-based DSKF | Error Cov. Prediction (17) | 27 | 18 | - |
Kalman Gain Calculation (20) and (21) | 1 | 3 | 1 | |
Error Cov. Update (23) | 9 | 9 | - | |
LBCA + PLAN [7] | 6 | 7 | 1 | |
q and B relation (47) | 0 | 6 | 0 | |
Total | 45 | 37 | 2 | |
LBCA-based LUT-DSKF | LBCA + PLAN [7] | 6 | 7 | 1 |
and B relation (38) | 0 | 9 | 0 | |
Total | 6 | 16 | 1 | |
LBCA-based PLL | LBCA + PLAN [7] | 6 | 7 | 1 |
Total | 6 | 7 | 1 |
Tracking | Total Time Complexity | Iteration Time Complexity | Added Time Complexity |
---|---|---|---|
Technique | [s] | [ns] | [times] |
Standard PLL | 6.8 | 22.7 | 1 |
-based DSKF | 41.5 | 138.3 | 6.1× |
LBCA-based DSKF | 61.1 | 203.7 | 8.9× |
LBCA-based LUT-DSKF | 25.8 | 86 | 3.8× |
LBCA-based PLL [7] | 16.1 | 53.7 | 2.4× |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortés, I.; van der Merwe, J.R.; Lohan, E.S.; Nurmi, J.; Felber, W. Performance Evaluation of Adaptive Tracking Techniques with Direct-State Kalman Filter. Sensors 2022, 22, 420. https://doi.org/10.3390/s22020420
Cortés I, van der Merwe JR, Lohan ES, Nurmi J, Felber W. Performance Evaluation of Adaptive Tracking Techniques with Direct-State Kalman Filter. Sensors. 2022; 22(2):420. https://doi.org/10.3390/s22020420
Chicago/Turabian StyleCortés, Iñigo, Johannes Rossouw van der Merwe, Elena Simona Lohan, Jari Nurmi, and Wolfgang Felber. 2022. "Performance Evaluation of Adaptive Tracking Techniques with Direct-State Kalman Filter" Sensors 22, no. 2: 420. https://doi.org/10.3390/s22020420
APA StyleCortés, I., van der Merwe, J. R., Lohan, E. S., Nurmi, J., & Felber, W. (2022). Performance Evaluation of Adaptive Tracking Techniques with Direct-State Kalman Filter. Sensors, 22(2), 420. https://doi.org/10.3390/s22020420