Amplitude Modeling of Specular Multipath Components for Robust Indoor Localization
Abstract
:1. Introduction
- We formulate a REM that predicts the SMC amplitudes, the SINR of SMCs, and the position error bound (PEB) at any position throughout the whole floor plan.
- We analyze a database of UWB radio channel measurements to show to what extent the REM represents the multipath components in this set of measured channel impulse response (CIR) data. To this end, we study the number of resolvable SMCs and the energy capture (EC) of these SMCs, which is the fraction of energy carried by the SMCs in relation to the total energy of the CIR.
- We show the usefulness of the REM in improving the robustness of a multipath-based single-anchor localization algorithm.
2. System and Environment Model
2.1. System Model
2.2. Position Error Bound
2.3. Radio Environment Map Using Gaussian Process Regression
3. Experiment
3.1. Experiment Setup
3.2. Experiment Pre-Processing
4. Analysis of the GPR-Based Channel Model
4.1. Energy Capture
4.2. SMC Amplitudes and SINR
4.3. Position Error Bound
5. Exploiting the GPR Model for (Multipath-Assisted) Positioning
6. Result
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, L.D.; He, W.; Li, S. Internet of Things in Industries: A Survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243. [Google Scholar] [CrossRef]
- Acampora, G.; Cook, D.; Rashidi, P.; Vasilakos, A. A Survey on Ambient Intelligence in Healthcare. Proc. IEEE 2013, 101, 2470–2494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borgia, E. The Internet of Things vision: Key features, applications and open issues. Comput. Commun. 2014, 54, 1–31. [Google Scholar] [CrossRef]
- Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.K.; Zhang, J.C. What Will 5G Be? IEEE J. Sel. Areas Commun. 2014, 32, 1065–1082. [Google Scholar] [CrossRef]
- Boccardi, F.; Heath, R.W.; Lozano, A.; Marzetta, T.L.; Popovski, P. Five disruptive technology directions for 5G. IEEE Commun. Mag. 2014, 52, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Jungnickel, V.; Manolakis, K.; Zirwas, W.; Panzner, B.; Braun, V.; Lossow, M.; Sternad, M.; Apelfrojd, R.; Svensson, T. The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Commun. Mag. 2014, 52, 44–51. [Google Scholar] [CrossRef]
- del Peral-Rosado, J.A.; Raulefs, R.; López-Salcedo, J.A.; Seco-Granados, G. Survey of Cellular Mobile Radio Localization Methods: From 1G to 5G. IEEE Commun. Surv. Tutor. 2017, 20, 1124–1148. [Google Scholar] [CrossRef]
- Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Context Aware Computing for The Internet of Things: A Survey. IEEE Commun. Surv. Tutor. 2014, 16, 414–454. [Google Scholar] [CrossRef] [Green Version]
- Wymeersch, H.; Seco-Granados, G.; Destino, G.; Dardari, D.; Tufvesson, F. 5G mm-Wave Positioning for Vehicular Networks. IEEE Wireless Commun. Mag. 2017, 24, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Hult, R.; Campos, G.R.; Steinmetz, E.; Hammarstrand, L.; Falcone, P.; Wymeersch, H. Coordination of Cooperative Autonomous Vehicles: Toward safer and more efficient road transportation. IEEE Signal Process. Mag. 2016, 33, 74–84. [Google Scholar] [CrossRef]
- Karlsson, R.; Gustafsson, F. The Future of Automotive Localization Algorithms: Available, reliable, and scalable localization: Anywhere and anytime. IEEE Signal Process. Mag. 2017, 34, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Koivisto, M.; Hakkarainen, A.; Costa, M.; Kela, P.; Leppänen, K.; Valkama, M. High-Efficiency Device Positioning and Location-Aware Communications in Dense 5G Networks. IEEE Commun. Mag. 2017, 55, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Thombre, S.; Jarvinen, K.; Lohan, E.S.; Alen-Savikko, A.K.; Leppakoski, H.; Bhuiyan, M.Z.H.; Bu-Pasha, S.; Ferrara, G.N.; Honkala, S.; et al. Robustness, Security and Privacy in Location-Based Services for Future IoT: A Survey. IEEE Access 2017, 5, 2169–3536. [Google Scholar] [CrossRef]
- Witrisal, K.; Meissner, P.; Leitinger, E.; Shen, Y.; Gustafson, C.; Tufvesson, F.; Haneda, K.; Dardari, D.; Molisch, A.F.; Conti, A.; et al. High-Accuracy Localization for Assisted Living: 5G systems will turn multipath channels from foe to friend. IEEE Signal Process. Mag. 2016, 33, 59–70. [Google Scholar] [CrossRef]
- Mazuelas, S.; Bahillo, A.; Lorenzo, R.; Fernandez, P.; Lago, F.; Garcia, E.; Blas, J.; Abril, E. Robust Indoor Positioning Provided by Real-Time RSSI Values in Unmodified WLAN Networks. IEEE J. Sel. Top. Signal Process. 2009, 3, 821–831. [Google Scholar] [CrossRef]
- Fadzilla, M.A.; Harun, A.; Shahriman, A.B. Localization Assessment for Asset Tracking Deployment by Comparing an Indoor Localization System with a Possible Outdoor Localization System. In Proceedings of the 2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA), Kuching, Malaysia, 15–17 August 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Raspopoulos, M.; Laoudias, C.; Kanaris, L.; Kokkinis, A.; Panayiotou, C.G.; Stavrou, S. 3D Ray Tracing for device-independent fingerprint-based positioning in WLANs. In Proceedings of the 2012 9th Workshop on Positioning, Navigation and Communication, Dresden, Germany, 15–16 March 2012; pp. 109–113. [Google Scholar] [CrossRef]
- Hatami, A.; Pahlavan, K. Comparative statistical analysis of indoor positioning using empirical data and indoor radio channel models. In Proceedings of the CCNC 2006, 2006 3rd IEEE Consumer Communications and Networking Conference, Las Vegas, NV, USA, 8–10 January 2006; Volume 2, pp. 1018–1022. [Google Scholar] [CrossRef]
- Chai, X.; Yang, Q. Reducing the Calibration Effort for Probabilistic Indoor Location Estimation. IEEE Trans. Mob. Comput. 2007, 6, 649–662. [Google Scholar] [CrossRef] [Green Version]
- Youssef, M.; Agrawala, A. The Horus WLAN Location Determination System. In Proceedings of the 3rd International Conference on Mobile Systems, Applications, and Services, MobiSys ’05, Seattle, WA, USA, 6–8 June 2005; ACM: New York, NY, USA, 2005; pp. 205–218. [Google Scholar] [CrossRef]
- Cassarà, P.; Potortì, F.; Barsocchi, P.; Girolami, M. Choosing an RSS device-free localization algorithm for Ambient Assisted Living. In Proceedings of the 2015 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Banff, AB, Canada, 13–16 October 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Gustafsson, F.; Gunnarsson, F. Mobile positioning using wireless networks: Possibilities and fundamental limitations based on available wireless network measurements. IEEE Signal Process. Mag. 2005, 22, 41–53. [Google Scholar] [CrossRef]
- Piccinni, G.; Avitabile, G.; Coviello, G.; Talarico, C. Real-Time Distance Evaluation System for Wireless Localization. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 3320–3330. [Google Scholar] [CrossRef]
- van Trees, H.L. Detection, Estimation, and Modulation Theory, Part I: Detection, Estimation, and Linear Modulation Theory; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Aditya, S.; Molisch, A.F.; Behairy, H.M. A Survey on the Impact of Multipath on Wideband Time-of-Arrival-Based Localization. Proc. IEEE 2018, 106, 1183–1203. [Google Scholar] [CrossRef]
- Shen, Y.; Win, M. Fundamental Limits of Wideband Localization—Part I: A General Framework. IEEE Trans. Inform. Theory 2010, 56, 4956–4980. [Google Scholar] [CrossRef]
- Witrisal, K.; Meissner, P. Performance Bounds for Multipath-assisted Indoor Navigation and Tracking (MINT). In Proceedings of the 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012. [Google Scholar]
- Witrisal, K.; Leitinger, E.; Hinteregger, S.; Meissner, P. Bandwidth Scaling and Diversity Gain for Ranging and Positioning in Dense Multipath Channels. IEEE Wirel. Commun. Lett. 2016, 5, 396–399. [Google Scholar] [CrossRef]
- Han, Y.; Shen, Y.; Zhang, X.P.; Win, M.Z.; Meng, H. Performance limits and geometric properties of array localization. IEEE Trans. Inform. Theory 2016, 62, 1054–1075. [Google Scholar] [CrossRef] [Green Version]
- Di Taranto, R.; Muppirisetty, S.; Raulefs, R.; Slock, D.; Svensson, T.; Wymeersch, H. Location-Aware Communications for 5G Networks: How location information can improve scalability, latency, and robustness of 5G. IEEE Signal Process. Mag. 2014, 31, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Marmasse, N.; Schmandt, C. Location-Aware Information Delivery withComMotion. In Handheld and Ubiquitous Computing; Thomas, P., Gellersen, H.W., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 157–171. [Google Scholar]
- Cadger, F.; Curran, K.; Santos, J.; Moffett, S. A Survey of Geographical Routing in Wireless Ad-Hoc Networks. IEEE Commun. Surv. Tutor. 2013, 15, 621–653. [Google Scholar] [CrossRef]
- Yilmaz, H.B.; Tugcu, T.; Alagöz, F.; Bayhan, S. Radio environment map as enabler for practical cognitive radio networks. IEEE Commun. Mag. 2013, 51, 162–169. [Google Scholar] [CrossRef]
- Arias-de Reyna, E.; Closas, P.; Dardari, D.; Djuric, P.M. Crowd-Based Learning of Spatial Fields for the Internet of Things: From Harvesting of Data to Inference. IEEE Signal Process. Mag. 2018, 35, 130–139. [Google Scholar] [CrossRef]
- Muppirisetty, L.S.; Svensson, T.; Wymeersch, H. Spatial Wireless Channel Prediction under Location Uncertainty. IEEE Trans. Wirel. Commun. 2016, 15, 1031–1044. [Google Scholar] [CrossRef] [Green Version]
- Mendrzik, R.; Meyer, F.; Bauch, G.; Win, M.Z. Enabling Situational Awareness in Millimeter Wave Massive MIMO Systems. IEEE J. Sel. Top. Signal Process. 2019, 13, 1196–1211. [Google Scholar] [CrossRef]
- Wang, Y.; Narasimha, M.; Heath, R.W. MmWave Beam Prediction with Situational Awareness: A Machine Learning Approach. In Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28 June 2018; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Leitinger, E.; Meyer, F.; Hlawatsch, F.; Witrisal, K.; Tufvesson, F.; Win, M.Z. A Belief Propagation Algorithm for Multipath-Based SLAM. IEEE Trans. Wirel. Commun. 2019, 18, 5613–5629. [Google Scholar] [CrossRef] [Green Version]
- Gentner, C.; Jost, T.; Wang, W.; Zhang, S.; Dammann, A.; Fiebig, U.C. Multipath Assisted Positioning with Simultaneous Localization and Mapping. IEEE Trans. Wirel. Commun. 2016, 15, 6104–6117. [Google Scholar] [CrossRef] [Green Version]
- Meissner, P.; Leitinger, E.; Lafer, M.; Witrisal, K. Real-time demonstration of multipath-assisted indoor navigation and tracking (MINT). In Proceedings of the 2014 IEEE International Conference on Communications Workshops (ICC), Sydney, Australia, 10–14 June 2014; pp. 144–149. [Google Scholar] [CrossRef]
- Meissner, P. Multipath-Assisted Indoor Positioning. Ph.D. Thesis, Graz University of Technology, Graz, Austria, 2014. [Google Scholar]
- Ulmschneider, M. Cooperative Multipath Assisted Positioning. Ph.D. Thesis, Hamburg University of Technology, Hamburg, Germany, 2021. [Google Scholar] [CrossRef]
- Nguyen, A.H.; Rath, M.; Leitinger, E.; Nguyen, K.V.; Witrisal, K. Gaussian Process Modeling of Specular Multipath Components. Appl. Sci. 2020, 10, 5216. [Google Scholar] [CrossRef]
- Molisch, A.F. Ultra-Wide-Band Propagation Channels. Proc. IEEE 2009, 97, 353–371. [Google Scholar] [CrossRef]
- Leitinger, E.; Meyer, F.; Tufvesson, F.; Witrisal, K. Factor graph based simultaneous localization and mapping using multipath channel information. In Proceedings of the 2017 IEEE International Conference on Communications Workshops (ICC Workshops), Paris, France, 21–25 May 2017; pp. 652–658. [Google Scholar] [CrossRef]
- Rath, M. Signal Process for Localization and Environment Mapping. Ph.D. Thesis, Graz University of Technology, Graz, Austria, 2021. [Google Scholar]
- Meissner, P.; Leitinger, E.; Witrisal, K. UWB for Robust Indoor Tracking: Weighting of Multipath Components for Efficient Estimation. IEEE Wirel. Commun. Lett. 2014, 3, 501–504. [Google Scholar] [CrossRef]
- Leitinger, E.; Meissner, P.; Rüdisser, C.; Dumphart, G.; Witrisal, K. Evaluation of Position-Related Information in Multipath Components for Indoor Positioning. IEEE J. Sel. Areas Commun. 2015, 33, 2313–2328. [Google Scholar] [CrossRef] [Green Version]
- Sachs, J.; Herrmann, R.; Kmec, M.; Helbig, M.; Schilling, K. Recent Advances and Applications of M-Sequence based Ultra-Wideband Sensors. In Proceedings of the 2007 IEEE International Conference on Ultra-Wideband, Singapore, 24–26 September 2007; pp. 50–55. [Google Scholar] [CrossRef]
- Molisch, A.F. Wireless Communications, 2nd ed.; Wiley-IEEE Press: Hoboken, NJ, USA, 2010. [Google Scholar]
- Krall, C. Signal Processing for Ultra Wideband Transceivers. Ph.D. Thesis, Graz University of Technology, Graz, Austria, 2008. [Google Scholar]
- Win, M.; Scholtz, R. On the robustness of ultra-wide bandwidth signals in dense multipath environments. IEEE Commun. Lett. 1998, 2, 51–53. [Google Scholar] [CrossRef]
- Nguyen, H.A.; Rath, M.; Leitinger, E.; Hinteregger, S.; Nguyen, V.K.; Witrisal, K. Channel Capacity Analysis of Indoor Environments for Location-Aware Communications. In Proceedings of the 2016 IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Rath, M.; Kulmer, J.; Leitinger, E.; Witrisal, K. Single-Anchor Positioning: Multipath Processing with Non-Coherent Directional Measurements. IEEE Access 2020, 8, 88115–88132. [Google Scholar] [CrossRef]
- Großwindhager, B.; Rath, M.; Kulmer, J.; Bakr, M.S.; Boano, C.A.; Witrisal, K.; Römer, K. SALMA: UWB-based Single-Anchor Localization System using Multipath Assistance. In Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems, Shenzhen, China, 4–7 November 2018. [Google Scholar]
- Stoica, P.; Nehorai, A. On the concentrated stochastic likelihood function in array signal processing. Circuits Syst. Signal Process. 1995, 14, 669–674. [Google Scholar] [CrossRef]
- Venus, A.; Leitinger, E.; Tertinek, S.; Witrisal, K. A Message Passing based Adaptive PDA Algorithm for Robust Radio-based Localization and Tracking. In Proceedings of the 2021 IEEE Radar Conference (RadarConf21), Atlanta, GA, USA, 7–14 May 2021. [Google Scholar] [CrossRef]
- Wilding, T.; Leitinger, E.; Witrisal, K. Multipath-based Localization and Tracking considering Off-Body Channel Effects. arXiv 2021, arXiv:2110.09932. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.A.; Nguyen, V.K.; Witrisal, K. Amplitude Modeling of Specular Multipath Components for Robust Indoor Localization. Sensors 2022, 22, 462. https://doi.org/10.3390/s22020462
Nguyen HA, Nguyen VK, Witrisal K. Amplitude Modeling of Specular Multipath Components for Robust Indoor Localization. Sensors. 2022; 22(2):462. https://doi.org/10.3390/s22020462
Chicago/Turabian StyleNguyen, Hong Anh, Van Khang Nguyen, and Klaus Witrisal. 2022. "Amplitude Modeling of Specular Multipath Components for Robust Indoor Localization" Sensors 22, no. 2: 462. https://doi.org/10.3390/s22020462
APA StyleNguyen, H. A., Nguyen, V. K., & Witrisal, K. (2022). Amplitude Modeling of Specular Multipath Components for Robust Indoor Localization. Sensors, 22(2), 462. https://doi.org/10.3390/s22020462