Novel Algorithm for Radon Real-Time Measurements with a Pixelated Detector
Abstract
:1. Introduction
2. Materials and Methods
2.1. The TimePix Detector
2.2. The ENEA-INMRI Radon Facility
2.3. Algorithm for Discrimination of α and β Particles
3. Results
3.1. Algorithm Optimization
3.2. TimePix Radon Exposure: Algorithm Performances
3.3. TimePix Response to Radon
3.4. Estimation of the Virtual Enclosure Volume
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WHO | World Health Organization |
ISS | International Space Station |
EFT-1 | Orion Exploration Flight Test 1 |
ASIC | Application Specific Integrated Circuit |
RDP | Radon Decay Product |
CPM | Counts Per Minute |
VEV | Virtual Enclosure Volume |
CMOS | Complementary Metal-Oxide-Semiconductor |
MDC | Minimum Detectable Concentration |
CCD | Charge Coupled Device |
SBC | Single-Board Computer |
References
- Belete, G.D.; Anteneh, Y.A. General Overview of Radon Studies in Health Hazard Perspectives. J. Oncol. 2021, 2021, 6659795. [Google Scholar] [CrossRef]
- Stidley, C.A.; Samet, J.M. A review of ecologic studies of lung cancer and indoor radon. Health Phys. 1993, 65, 234–251. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Hwang, W.J.; Cho, J.S.; Kang, D.R. Attributable risk of lung cancer deaths due to indoor radon exposure. Ann. Occup. Environ. Med. 2016, 28, 8. [Google Scholar]
- Clement, C.H.; Tirmarche, M.; Harrison, J.D.; Laurier, D.; Paquet, F.; Blanchardon, E.; Marsh, J.W. Lung Cancer Risk from Radon and Progeny and Statement on Radon. Ann. ICRP 2010, 40, 1–64. [Google Scholar] [CrossRef] [PubMed]
- Zeeb, H.; Shannoun, F. (Eds.) WHO Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Geneva, Switzerland, 2009; ISBN 9789241547673. [Google Scholar]
- Zielinski, J.M.; Carr, Z.; Krewski, D.; Repacholi, M. World Health Organization’s International Radon Project. J. Toxicol. Environ. Health Part A 2006, 69, 759–769. [Google Scholar] [CrossRef]
- Pantelić, G.; Celiković, I.; Zivanović, M.; Vukanac, I.; Nikolić, J.K.; Cinelli, G.; Gruber, V. Literature Review of Indoor Radon Surveys in Europe; JRC114370; Publications Office of the European Union: Luxembourg, 2018.
- George, A.C. An overview of instrumentation for measuring environmental radon and radon progeny. IEEE Trans. Nucl. Sci. 1990, 37, 892–901. [Google Scholar] [CrossRef]
- El-Badry, B.A.; Al-Naggar, T.I. Estimation of indoor radon levels using etched track detector. J. Radiat. Res. Appl. Sci. 2018, 11, 355–360. [Google Scholar] [CrossRef]
- Gubanski, A.; Kupracz, J.; Kostyla, P.; Kaczorowska, D.; Wrobel, J. Application of the Electret in Alpha Radiation Sensor to Measure the Concentration of Radon in Selected Ambient Conditions. J. Sens. 2019, 2019, 1705481. [Google Scholar] [CrossRef]
- Xie, D.; Liao, M.; Wang, H.; Kearfott, K.J. A study of diurnal and short-term variations of indoor radon concentrations at the University of Michigan, USA and their correlations with environmental factors. Indoor Built Environ. 2017, 26, 1051–1061. [Google Scholar] [CrossRef]
- Porstendörfer, J.; Butterweck, G.; Reineking, A. Daily variation of the radon concentration indoors and outdoors and the influence of meteorological parameters. Health Phys. 1994, 67, 283–287. [Google Scholar] [CrossRef]
- Venoso, G.; Iacoponi, A.; Pratesi, G.; Guazzini, M.; Boccini, L.; Corbani, E.; Bucci, S.; Leonardi, F.; Trevisi, R.; Ampollini, M.; et al. Impact of temporal variability of radon concentration in workplaces on the actual radon exposure during working hours. Sci. Rep. 2021, 11, 16984. [Google Scholar]
- Siročić, P.; Stanko, D.; Sakač, N.; Doganxcxić, D.; Trojko, T. Short-Term Measurement of Indoor Radon Concentration in Northern Croatia. Appl. Sci. 2020, 10, 2341. [Google Scholar] [CrossRef] [Green Version]
- Abbady, A.; Abbady, A.G.E.; Miche, R. Indoor Radon Measurement with The Lucas Cell Technique. Appl. Radiat. Isot. 2004, 61, 1469–1475. [Google Scholar] [CrossRef]
- Machaj, B.; Urbański, P. Continuos measurement of radon concentration in the air with the Lucas Cell by periodic sampling. Nukleonika 1999, 44, 579–594. [Google Scholar]
- Baltzer, P.; Görsten, K.G.; Bäcklin, A. A pulse-counting ionization chamber for measuring the radon concentration in air. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1992, 317, 357–364. [Google Scholar] [CrossRef]
- Studnička, F.; Štěpań, J.; Sleǵr, J. Low-Cost Radon Detector with Low-Voltage Air-Ionization Chamber. Sensors 2019, 19, 3721. [Google Scholar] [CrossRef] [Green Version]
- IAEA; WHO. Design and Conduct of Indoor Radon Surveys. Saf. Rep. Ser. No. 98 2019, 317, 22. [Google Scholar]
- Caresana, M.; Garlati, L.; Murtas, F.; Romano, S.; Severino, C.T.; Silari, M. Real-time measurements of radon activity with the Timepix-based RADONLITE and RADONPIX detectors. J. Instrum. 2014, 9, P11023. [Google Scholar] [CrossRef] [Green Version]
- Bulanek, B.; Jilek, K.; Cermak, P. Measurement of radon progenies using the timepix detector. Radiat. Prot. Dosim. 2014, 160, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Llopart, X.; Campbell, M.; Dinapoli, R.; Segundo, D.S.; Pernigotti, E. Medipix2: A 64k pixel readout chip with 55-μm square elements working in single photon counting mode. IEEE Trans. Nucl. Sci. 2002, 49, 2279–2283. [Google Scholar] [CrossRef]
- Poikela, T.; Plosila, J.; Westerlund, T.; Campbell, M.; de Gaspari, M.; Llopart, X.; Gromov, V.; Kluit, R.; van Beuzekom, M.; Zappon, F.; et al. Timepix3: A 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout. J. Instrum. 2014, 9, C05013. [Google Scholar] [CrossRef]
- Turecek, D.; Jakubeka, J.; Soukupa, P. USB 3.0 readout and time-walk correction method for Timepix3 detector. J. Instrum. 2016, 11, C12065. [Google Scholar] [CrossRef]
- Timepix at the International Space Station. Available online: https://medipix.web.cern.ch/timepix-international-space-station (accessed on 12 November 2021).
- Timepix in NASA’s Orion Rocket. Available online: https://medipix.web.cern.ch/timepix-nasas-orion-rocket (accessed on 12 November 2021).
- Grangia, C.; Polansky, S.; Pospisil, S.; Turecek, D.; Vykydal, Z. Directional Visualization of Space Radiation Quanta with Timepix/SATRAM Spacecraft Payload on board ESA Proba-V Satellite. Proc. Sci. PoS (X LASNPA) 2014, 3, 10. [Google Scholar]
- Wong, S.; Alozy, J.; Ballabriga, R.; Campbell, M.; Kremastiotis, I.; Llopart, X.; Poikela, T.; Sriskaran, V.; Tlustos, L.; Turecek, D. Introducing Timepix2, a frame-based pixel detector readout ASIC measuring energy deposition and arrival time. Radiat. Meas. 2020, 131, 106230. [Google Scholar] [CrossRef]
- Glavič-Cindro, D.; Brodnik, D.; Cardellini, F.; de Felice, P.; Ponikvar, D.; Vencelj, M.; Petrovič, T. Evaluation of the radon interference on the performance of the portable monitoring air pump for radioactive aerosols (MARE). Appl. Radiat. Isot. 2018, 134, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Bertin Technologies SAS. AlphaGUARD—Radon Monitor. Available online: https://www.bertin-instruments.com/product/radon-professional-monitoring/radon-alphaguard/ (accessed on 5 January 2022).
- Qadr, H.; Hamad, A. Alpha-Particle Stopping Powers in Air and Argon—Research & Reviews. J. Pure Appl. Phys. 2017, 5, 22–28. [Google Scholar]
Exposure 1 | Exposure 2 | Exposure 3 | Exposure 4 | |
---|---|---|---|---|
C(A) [Bq/m3] | 64 ± 6 | 481 ± 50 | 1158 ± 120 | 4345 ± 430 |
Total exposure time [min] | 120 | 170 | 120 | 10 |
Integration time [min] | 60 | 10 | 10 | 2 |
Number of frames acquired | 2 | 17 | 12 | 5 |
mean pixel hit rate [Hz] | 0.18 ± 0.01 | 0.68 ± 0.03 | 0.74 ± 0.04 | 0.21 ± 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzo, A.; Cardellini, F.; Poggi, C.; Borra, E.; Ciciani, L.; Narici, L.; Sperandio, L.; Vilardi, I. Novel Algorithm for Radon Real-Time Measurements with a Pixelated Detector. Sensors 2022, 22, 516. https://doi.org/10.3390/s22020516
Rizzo A, Cardellini F, Poggi C, Borra E, Ciciani L, Narici L, Sperandio L, Vilardi I. Novel Algorithm for Radon Real-Time Measurements with a Pixelated Detector. Sensors. 2022; 22(2):516. https://doi.org/10.3390/s22020516
Chicago/Turabian StyleRizzo, Alessandro, Francesco Cardellini, Claudio Poggi, Enrico Borra, Luca Ciciani, Livio Narici, Luciano Sperandio, and Ignazio Vilardi. 2022. "Novel Algorithm for Radon Real-Time Measurements with a Pixelated Detector" Sensors 22, no. 2: 516. https://doi.org/10.3390/s22020516
APA StyleRizzo, A., Cardellini, F., Poggi, C., Borra, E., Ciciani, L., Narici, L., Sperandio, L., & Vilardi, I. (2022). Novel Algorithm for Radon Real-Time Measurements with a Pixelated Detector. Sensors, 22(2), 516. https://doi.org/10.3390/s22020516