Anodically Bonded Photoacoustic Transducer: An Approach towards Wafer-Level Optical Gas Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sensor Concept
2.2. Manufacturing
2.3. Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Kirby, B.P.; Lewis, S.P.; Lewis, P.D. Do You Think Air? Public interest in Air Pollution. Ergon. Hum. Factors 2021, 8. [Google Scholar]
- Gas Sensor Market Size, Share & Trends Analysis Report By Product (Oxygen/Lambda Sensor, Carbon Dioxide Sensor), By Type (Wired, Wireless), By Technology, By End Use, By Region, And Segment Forecasts, 2021–2028. Available online: https://www.grandviewresearch.com/industry-analysis/gas-sensors-market (accessed on 28 December 2021).
- Paleologos, K.E.; Selim, M.Y.; Mohamed, A.M.O. Indoor air quality. In Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering; Butterworth-Heinemann: Oxford, UK, 2021; pp. 405–489. [Google Scholar] [CrossRef]
- Fang, L.; Clausen, G.; Fanger, P.O. Impact of Temperature and Humidity on the Perception of Indoor Air Quality. Indoor Air 1998, 8, 80–90. [Google Scholar] [CrossRef]
- Wolkoff, P. Indoor air humidity, air quality, and health—An overview. Int. J. Hyg. Environ. Health 2018, 221, 376–390. [Google Scholar] [CrossRef]
- Zhou, K.; Ye, Y.H.; Liu, Q.; Liu, A.J.; Peng, S.L. Evaluation of ambient air quality in Guangzhou, China. J. Environ. Sci. 2007, 19, 432–437. [Google Scholar] [CrossRef]
- Satish, U.; Mendell, M.J.; Shekhar, K.; Hotchi, T.; Sullivan, D.; Streufert, S.; Fisk, W.J. Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ. Health Perspect. 2012, 120, 1671–1677. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.Y.; Ho, K.F.; Chang, T.Y.; Hong, G.B.; Liu, C.W.; Chuang, K.J. In-vehicle carbon dioxide and adverse effects: An air filtration-based intervention study. Sci. Total Environ. 2020, 723, 138047. [Google Scholar] [CrossRef] [PubMed]
- Von Pettenkofer, M. Über den Luftwechsel in Wohngebäuden; Cotta’sche Buchhandlung: Munich, Germany, 1859. [Google Scholar]
- Korotcenkov, G.; Cho, B.K. Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey). Sens. Actuators B Chem. 2011, 156, 527–538. [Google Scholar] [CrossRef]
- Haensch, A.; Barsan, N.; Weimar, U. Chemoresistive CO2-Sensoren basierend auf Seltenerdoxycarbonat-beladenem Zinndioxid. In Automobil-Sensorik; Tille, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 65–78. [Google Scholar] [CrossRef]
- Ersoez, B.; Bauersfeld, M.L.; Wöllenstein, J. Ionogel—Based Composite Material for CO2 Sensing Deposited on a Chemiresistive Transducer. Proceedings 2017, 1, 314. [Google Scholar] [CrossRef] [Green Version]
- Ersöz, B.; Schmitt, K.; Wöllenstein, J. Electrolyte-gated transistor for CO2 gas detection at room temperature. Sens. Actuators B Chem. 2020, 317, 128201. [Google Scholar] [CrossRef]
- Gomes, M.; Duarte, A.C.; Oliveira, J.P. Detection of CO2 using a qaurtz crystal microbalance. Sens. Actuators B Chem. 1995, 26, 191–194. [Google Scholar] [CrossRef]
- Muraoka, S.; Kiyohara, Y.; Oue, H.; Higashimoto, S. A CO2 Sensor Using a Quartz Crystal Microbalance Coated with a Sensitive Membrane. Electron. Commun. Jpn. 2014, 97, 60–66. [Google Scholar] [CrossRef]
- Hodgkinson, J.; Smith, R.; Ho, W.O.; Saffell, J.R.; Tatam, R.P. Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor. Sens. Actuators B Chem. 2013, 186, 580–588. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.G. LXVIII. Upon the production of sound by radiant energy. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1881, 11, 510–528. [Google Scholar] [CrossRef]
- Röntgen, W.C. On tones produced by the intermittent irradiation of a gas. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1881, 11, 308–311. [Google Scholar] [CrossRef] [Green Version]
- Huber, J.; Wöllenstein, J. Kompaktes photoakustisches Gasmesssystem mit Potential zur weiteren Miniaturisierung. tm-Tech. Mess. 2013, 80, 448–453. [Google Scholar] [CrossRef]
- Kühnemann, F. Photoacoustic Detection of CO2: 8. In Carbon Dioxide Sensing; Gerlach, G., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2019; pp. 191–213. [Google Scholar] [CrossRef]
- Golay, M.J.E. Theoretical consideration in heat and infra-red detection, with particular reference to the pneumatic detector. Rev. Sci. Instrum. 1947, 18, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Goertzel, G. An Algorithm for the Evaluation of Finite Trigonometric Series. Am. Math. Mon. 1958, 65, 34–35. [Google Scholar] [CrossRef] [Green Version]
- Kochanov, R.V.; Gordon, I.E.; Rothman, L.S.; Wcisło, P.; Hill, C.; Wilzewski, J.S. HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data. J. Quant. Spectrosc. Radiat. Transf. 2016, 177, 15–30. [Google Scholar] [CrossRef]
- Gordon, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Eberl, M.; Jost, F.; Kolb, S.; Schaller, R.; Dettmann, D.; Gassner, S.; Skorupa, F. Miniaturized photoacoustic CO2 gas sensors—A new approach for the automotive sector. In AmE 2019—Automotive Meets Electronics, Proceedings of the 10th GMM-Symposium, Dortmund, Germany, 12–13 March 2019; VDE Verlag: Berlin, Germany, 2019; pp. 1–5. [Google Scholar]
- Huber, J.; Weber, C.; Eberhardt, A.; Wöllenstein, J. Photoacoustic CO2-Sensor for Automotive Applications. Procedia Eng. 2016, 168, 3–6. [Google Scholar] [CrossRef]
- Huber, J.; Enriquez, J.A.; Escobar, A.; Kolb, S.; Dehé, A.; Jost, F.; Wöllenstein, J. Photoakustischer Low-Cost CO2-Sensor für Automobilanwendungen. In Automobil-Sensorik; Tille, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 79–96. [Google Scholar] [CrossRef]
- Weber, C.; El-Safoury, M.; Eberhardt, A.; Schmitt, K.; Wöllenstein, J. 4.2.2 Miniaturisiere Photoakustische Detektoren für den Nachweis Fluorhaltiger Kältemittel; Tagungsband; AMA Service GmbH: Wunstorf, Germany, 2019; pp. 322–327. [Google Scholar] [CrossRef]
- Schjølberg-Henriksen, K.; Wang, D.T.; Rogne, H.; Ferber, A.; Vogl, A.; Moe, S.; Bernstein, R.; Lapadatu, D.; Sandven, K.; Brida, S. High-resolution pressure sensor for photo acoustic gas detection. Sens. Actuators A Phys. 2006, 132, 207–213. [Google Scholar] [CrossRef]
- Wittstock, V.; Scholz, L.; Bierer, B.; Perez, A.O.; Wöllenstein, J.; Palzer, S. Design of a LED-based sensor for monitoring the lower explosion limit of methane. Sens. Actuators B Chem. 2017, 247, 930–939. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gassner, S.; Schaller, R.; Eberl, M.; von Koblinski, C.; Essing, S.; Ghaderi, M.; Schmitt, K.; Wöllenstein, J. Anodically Bonded Photoacoustic Transducer: An Approach towards Wafer-Level Optical Gas Sensors. Sensors 2022, 22, 685. https://doi.org/10.3390/s22020685
Gassner S, Schaller R, Eberl M, von Koblinski C, Essing S, Ghaderi M, Schmitt K, Wöllenstein J. Anodically Bonded Photoacoustic Transducer: An Approach towards Wafer-Level Optical Gas Sensors. Sensors. 2022; 22(2):685. https://doi.org/10.3390/s22020685
Chicago/Turabian StyleGassner, Simon, Rainer Schaller, Matthias Eberl, Carsten von Koblinski, Simon Essing, Mohammadamir Ghaderi, Katrin Schmitt, and Jürgen Wöllenstein. 2022. "Anodically Bonded Photoacoustic Transducer: An Approach towards Wafer-Level Optical Gas Sensors" Sensors 22, no. 2: 685. https://doi.org/10.3390/s22020685
APA StyleGassner, S., Schaller, R., Eberl, M., von Koblinski, C., Essing, S., Ghaderi, M., Schmitt, K., & Wöllenstein, J. (2022). Anodically Bonded Photoacoustic Transducer: An Approach towards Wafer-Level Optical Gas Sensors. Sensors, 22(2), 685. https://doi.org/10.3390/s22020685