Measurement of Water Holdup in Vertical Upward Oil–Water Two-Phase Flow Pipes Using a Helical Capacitance Sensor
Abstract
:1. Introduction
2. The Principle of Helical Capacitance Sensor
2.1. Sensor Structure
2.2. Sensor Detection Principle
3. Optimization of Sensor Structure Parameters
3.1. Optimization Principle of Sensor Simulation
3.2. Optimization of the Angle between Excitation and Protection Electrodes
3.3. Optimization of Measuring Electrode Opening Angle
3.4. Optimization of Electrode Pitch
4. Vertical Upward Oil–Water Two-Phase Flow Experiment
4.1. Sensor and Measuring Circuit
4.2. Experiment Facility
4.3. Experimental Condition Settings
5. Analysis of Experimental Results
5.1. Response Characteristics of Helical Capacitance Sensor
5.2. Water Holdup Measurement Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbol | |
C | Capacitance value (F) |
Cx | Capacitance of the helical capacitance sensor (F) |
CV | Capacitance of the parallel connection of two capacitors (F) |
CH | Capacitance of the series connection of two capacitors (F) |
C() | Capacitance value when the fluid medium is oil water mixture (F) |
C() | Capacitance value when the fluid medium is all oil (F) |
C() | Capacitance value when the fluid medium in the pipeline is all water (F) |
Electric field intensity (V/m) | |
Electric field energy of the whole sensor measurement area (J) | |
Electric field energy at the subdivision units (J) | |
l | Pitch length of the electrodes of the capacitance sensor (mm) |
M | Total number of division units |
Q | Charge quantity (C) |
Qt | Total flow rate of oil–water flow (m3/day) |
Savg | The average sensitivity of the electric field of sensor |
Sdev | Sensitivity standard deviation of divided units |
U | Potential difference between two plates of capacitive sensor (V) |
Excitation signal of the sensor (V) | |
Output of the C/V conversion module (V) | |
Vm | Output voltage of the signal conditioning circuit (V) |
Vo | Output when the fluid in the pipeline is all oil (V) |
Vw | Output when the fluid in the pipeline is all water (V) |
Yw | Water holdup |
Yw* | Apparent water holdup |
Greek letters | |
α | Cross-section angle of the measuring electrodes (°) |
β | Interval angles between the measuring electrodes and the protective electrodes (°) |
Dielectric constant (F/m) | |
Dielectric constant of vacuum | |
Relative dielectric constant of oil | |
Relative dielectric constant of water | |
ρ | Charge density (C/m2) |
Electric field potential (V) | |
Acronyms | |
SVP | Sensitivity variation parameter |
FEA | Finite element analysis |
AF | Annular flow |
D O/W | Dispersion oil in water flow |
D OS/W | Dispersion oil in water slug flow |
D W/O | Dispersion water in oil flow |
VFD O/W | Very fine dispersion oil in water flow |
References
- Govier, G.W.; Sullivan, G.A.; Wood, R.K. The upward vertical flow of oil-water mixtures. J. Chem. Eng. 1961, 39, 67–75. [Google Scholar] [CrossRef]
- Hasson, D.; Mann, U.; Nir, A. Annular flow of two immiscible liquids. Can. J. Chem. Eng. 1970, 48, 514–520. [Google Scholar] [CrossRef]
- Hu, B.; Matar, O.K.; Hewitt, G.F.; Angelia, P. Mean and turbulent fluctuating velocities in oil-water vertical dispersed flows. Chem. Eng. Sci. 2007, 62, 1199–1214. [Google Scholar] [CrossRef]
- Nadler, M.; Mewes, D. The effect of gas injection on the flow of two-immiscible liquids in horizontal pipes. Chem. Eng. Technol. 1995, 18, 156–165. [Google Scholar] [CrossRef]
- Jana, A.K.; Das, G.; Das, P.K. Flow regime identification of two-phase liquid-liquid upflow through vertical pipe. Chem. Eng. Sci. 2006, 61, 1500–1515. [Google Scholar] [CrossRef]
- Li, G.; Guo, L.; Gao, H.; Yu, L.; Huang, J.; Chen, X. Flow patterns of oil-water liquid-liquid two-phase flow in helically coiled tubes. J. Chem. Eng. 2000, 51, 239–242. [Google Scholar]
- Brauner, N.; Ullmann, A. Modeling of phase inversion phenomenon in two-phase pipe flows. Int. J. Multip. Flow 2002, 28, 1177–1204. [Google Scholar] [CrossRef]
- Flores, J.G.; Chen, X.T.; Sarica, C.; Brill, J.P. Characterization of oil-water flow patterns in vertical and deviated wells. SPE Product. Facil. 1999, 14, 102–109. [Google Scholar] [CrossRef]
- Nassos, G.P.; Bankoff, S.G. Local resistivity probe for study of point properties of gas-liquid flows. Can. J. Chem. Eng. 2010, 45, 271–274. [Google Scholar] [CrossRef]
- Devia, F.; Fossa, M. Design and optimization of impedance probes for void fraction measurements. Flow Meas. Instrum. 2003, 14, 39–149. [Google Scholar] [CrossRef]
- Da Silva, M.J.; Hampel, U. Capacitance wire-mesh sensor applied for the visualization of three-phase gas-liquid-liquid flows. Flow Meas. Instrum. 2013, 34, 113–117. [Google Scholar] [CrossRef]
- Huang, S.F.; Zhang, X.J.; Wang, D.; Lin, Z. Equivalent water layer height measurement by a single-wire capacitance probe in gas-liquid flows. Int. J. Multiph. Flow 2008, 34, 809–818. [Google Scholar] [CrossRef]
- Hatice, T.A.; Murat, O.M.; Evren, O. Computational intelligence models for PIV based particle (cuttings) direction and velocity estimation in multi-phase flows. J. Petroleum Sci. Eng. 2019, 172, 547–558. [Google Scholar]
- Lecordier, B.; Demare, D.; Vervisch, L.M.J.; Reveillon, J.; Trinité, M. Estimation of the accuracy of PIV treatments for turbulent flow studies by direct numerical simulation of multi-phase flow. Meas. Sci. Technol. 2001, 12, 63–78. [Google Scholar] [CrossRef]
- Carvalho, R.D.M.; Venturini, O.J.; Tanahashi, E.I.; Neves, F., Jr.; França, F.A. Application of the ultrasonic technique and high-speed filming for the study of the structure of air-water bubbly flows—ScienceDirect. Exp. Thermal Fluid Sci. 2009, 33, 1065–1086. [Google Scholar] [CrossRef]
- Kouame, D.; Girault, J.-M.; Remenieras, J.-P.; Chemla, J.-P.; Lethiecq, M. High resolution processing techniques for ultrasound Doppler velocimetry in the presence of colored noise. II. Multiplephase pipe-flow velocity measurement. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2003, 50, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Abouelwafa, M.S.A.; Kendall, E.J.M. The use of capacitance sensors for phase percentage determination in multiphase pipelines. IEEE Trans. Instrum. Meas. 1980, 29, 24–27. [Google Scholar] [CrossRef]
- Geraets, J.J.M.; Borst, J.C. A capacitance sensor for two-phase void fraction measurement and flow pattern identification. Int. J. Multip. Flow 1988, 14, 305–320. [Google Scholar] [CrossRef]
- Hammer, E.A.; Tollefsen, J.; Olsvik, K. Capacitance transducers for non-intrusive measurement of water in crude oil. Flow Meas. Instrum. 1989, 1, 51–58. [Google Scholar] [CrossRef]
- Tollefsen, J.; Hammer, E.A. Capacitance sensor design for reducing errors in phase concentration measurements. Flow Meas. Instrum. 1998, 9, 25–32. [Google Scholar] [CrossRef]
- Elkow, K.J.; Rezkallah, K.S. Void fraction measurements in gas-liquid flows using capacitance sensors. Meas. Sci. Technol. 1999, 7, 1153–1163. [Google Scholar] [CrossRef]
- Jin, F.; Lu, Z.; Zhang, H.; Wang, S. Capacitance Transducer with a New Type of Electrodes Configuration for Phase Concentration Measurement. J. Northeast. Univ. 1998, 6, 58–61. [Google Scholar]
- Jaworek, A.; Krupa, A.; Trela, M. Capacitance sensor for void fraction measurement in water/steam flows. Flow Meas. Instrum. 2004, 15, 317–324. [Google Scholar] [CrossRef]
- Tan, H.; Zhao, Q.; Xu, T.; Hui, S. Capacitance-based system for solid concentration measurement in gas/solid two-phase flow. Chin. J. Sci. Instrum. 2007, 28, 1947–1950. [Google Scholar]
- Hu, J.H.; Liu, X.B.; Li, L.; Li, Y.W.; Wang, Y.J. Study on response characteristics of composite capacitive sensor under horizontal condition. Pet. Instrum. 2011, 25, 77–79. [Google Scholar]
- Ye, J.; Peng, L.; Wang, W.; Zhou, W. Optimization of helical capacitance sensor for void fraction measurement of gas-liquid two-phase flow in a small diameter tube. IEEE Sens. J. 2011, 11, 2189–2196. [Google Scholar] [CrossRef]
- Dos Reis, E.; da Silca Cunha, D. Experimental study on different configurations of capacitive sensors for measuring the volumetric concentration in two-phase flows. Flow Meas. Instrum. 2014, 37, 127–134. [Google Scholar] [CrossRef]
- Zhao, A.; Jin, N.D.; Zhai, L.S.; Gao, Z.K. Liquid holdup measurement in horizontal oil-water two-phase flow by using concave capacitance sensor. Measurement 2014, 49, 153–163. [Google Scholar]
- Zhai, L.; Jin, N.; Gao, Z.; Wang, Z. Liquid holdup measurement with double helix capacitance sensor in horizontal oil–water two-phase flow pipes. Chin. J. Chem. Eng. 2015, 23, 268–275. [Google Scholar] [CrossRef]
- Xie, C.G.; Stott, A.L.; Plaskowski, A.; Beck, M.S. Design of capacitance electrodes for concentration measurement of two-phase flow. Meas. Sci. Technol. 1990, 1, 65–78. [Google Scholar] [CrossRef]
- Liu, X.; Qiang, X.; Qiao, H.; Ma, G.; Xiong, J.; Qiao, Z. A theoretical model for a capacitance tool and its application to production logging. Flow Meas. Instrum. 1998, 9, 249–257. [Google Scholar] [CrossRef]
- Jin, F.; Zhang, B.; Wang, S. Optimizing the design of a capacitive transducer for phase-concentration measurements of gas/solid two-phase flows. J. Tsinghua Univ. (Sci. Technol.) 2002, 42, 380–382. [Google Scholar]
- Canière, H.; T’Joen, C.; Willockx, A.; De Paepe, M.; Christians, M.; Van Rooyen, E.; Liebenberg, L.; Meyer, J. Horizontal two-phase flow characterization for small diameter tubes with a capacitance sensor. Meas. Sci. Technol. 2007, 18, 2898–2906. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, H. Optimization of capacitive sensors for solid concentration measurement in gas/solid two-phase flow. Chin. J. Ent. Instrum. 2007, 28, 1956–1959. [Google Scholar]
- Demori, M.; Ferrari, V.; Strazza, D.; Poesio, P. A capacitive sensor system for the analysis of two-phase flows of oil and conductive water. Sens. Actuators A 2010, 163, 172–179. [Google Scholar] [CrossRef]
Interval Angle (β) | 5° | 10° | 15° | 20° | 25° | 30° |
---|---|---|---|---|---|---|
56.21% | 54.55% | 68.41% | 54.71% | 55.89% | 56.69% | |
SVP | 0.2581 | 0.2939 | 0.1766 | 0.2772 | 0.2628 | 0.2613 |
Measuring Electrode Section Angle (α) | 60° | 62° | 64° | 66° | 68° | 70° |
---|---|---|---|---|---|---|
68.41% | 65.68% | 67.06% | 69.52% | 65.96% | 67.53% | |
SVP | 0.1766 | 0.1646 | 0.1655 | 0.1612 | 0.1704 | 0.1696 |
Helical Electrode Pitch (mm) | 54 | 94 | 162 |
---|---|---|---|
73.64% | 69.52% | 52.77% | |
SVP | 0.2071 | 0.1612 | 0.4881 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, R.; Jin, N.; Hao, Q.; Ren, W.; Zhai, L. Measurement of Water Holdup in Vertical Upward Oil–Water Two-Phase Flow Pipes Using a Helical Capacitance Sensor. Sensors 2022, 22, 690. https://doi.org/10.3390/s22020690
Dai R, Jin N, Hao Q, Ren W, Zhai L. Measurement of Water Holdup in Vertical Upward Oil–Water Two-Phase Flow Pipes Using a Helical Capacitance Sensor. Sensors. 2022; 22(2):690. https://doi.org/10.3390/s22020690
Chicago/Turabian StyleDai, Runsong, Ningde Jin, Qingyang Hao, Weikai Ren, and Lusheng Zhai. 2022. "Measurement of Water Holdup in Vertical Upward Oil–Water Two-Phase Flow Pipes Using a Helical Capacitance Sensor" Sensors 22, no. 2: 690. https://doi.org/10.3390/s22020690
APA StyleDai, R., Jin, N., Hao, Q., Ren, W., & Zhai, L. (2022). Measurement of Water Holdup in Vertical Upward Oil–Water Two-Phase Flow Pipes Using a Helical Capacitance Sensor. Sensors, 22(2), 690. https://doi.org/10.3390/s22020690