Multiple Sensor Fault Detection Using Index-Based Method
Abstract
:1. Introduction
2. Index-Based Methods
2.1. Moving-Average-Based Index
2.2. Moving-RMS-Based Index
2.3. Moving-Variance-Based Index
2.4. Moving-Energy-Based Index
2.5. First-Order-Derivative-Based Index
2.6. Second-Order-Derivative-Based Index
2.7. Auto-Correlation Index
2.8. Auxiliary Index
3. Multi-Sensor Fault Diagnosis
3.1. Generation of Speed Sensor Residuals
3.2. Generation of Voltage Sensor Residuals
3.3. Generation of Stator Current Sensor Residuals
4. Results and Performance Evaluation
4.1. No-Fault Scenario
4.2. Multi-Sensor Fault Scenario
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tao, H.; Peng, T.; Yang, C.; Gao, J.; Chen, Z.; Yang, C.; Gui, W. An FCS-MPC-based open-circuit and current sensor fault diagnosis method for traction inverters with two current sensors. Int. J. Electr. Power Energy Syst. 2023, 144, 108526. [Google Scholar] [CrossRef]
- Chen, Y.; Gou, L.; Li, H.; Wang, J. Sensor Fault Diagnosis of Aero Engine Control System Based on Honey Badger Optimizer. IFAC-PapersOnLine 2022, 55, 228–233. [Google Scholar] [CrossRef]
- Long, Z.; Zhang, X.; Zhang, L.; Qin, G.; Huang, S.; Song, D.; Shao, H.; Wu, G. Motor fault diagnosis using attention mechanism and improved adaboost driven by multi-sensor information. Measurement 2021, 170, 108718. [Google Scholar] [CrossRef]
- Frisk, E.; Jarmolowitz, F.; Jung, D.; Krysander, M. Fault Diagnosis Using Data, Models, or Both–An Electrical Motor Use-Case. IFAC-PapersOnLine 2022, 55, 533–538. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, P.X.; Gao, J. Model-based fault diagnosis methods for systems with stochastic process—A survey. Neurocomputing 2022, 513, 137–152. [Google Scholar] [CrossRef]
- Man, J.; Dong, H.; Jia, L.; Qin, Y. AttGGCN Model: A Novel Multi-Sensor Fault Diagnosis Method for High-Speed Train Bogie. IEEE Trans. Intell. Transp. Syst. 2022, 23, 19511–19522. [Google Scholar] [CrossRef]
- Goktas, T. Evaluation and Classification of Double Bar Breakages through Three-Axes Vibration Sensor in Induction Motors. IEEE Sens. J. 2022, 22, 13602–13611. [Google Scholar] [CrossRef]
- Ma, S.; Yuan, Y.; Wu, J.; Jiang, Y.; Jia, B.; Li, W. Multisensor decision approach for HVCB fault detection based on the vibration information. IEEE Sens. J. 2020, 21, 985–994. [Google Scholar] [CrossRef]
- Cao, X.; Xu, X.; Duan, Y.; Yang, X. Health Status Recognition of Rotating Machinery Based on Deep Residual Shrinkage Network under Time-varying Conditions. IEEE Sens. J. 2022, 22, 18332–18348. [Google Scholar] [CrossRef]
- Furse, C.M.; Kafal, M.; Razzaghi, R.; Shin, Y.J. Fault diagnosis for electrical systems and power networks: A review. IEEE Sens. J. 2020, 21, 888–906. [Google Scholar] [CrossRef]
- Piltan, F.; Kim, J.M. Bearing fault diagnosis by a robust higher-order super-twisting sliding mode observer. Sensors 2018, 18, 1128. [Google Scholar] [CrossRef] [Green Version]
- Satpathi, K.; Yeap, Y.M.; Ukil, A.; Geddada, N. Short-time Fourier transform based transient analysis of VSC interfaced point-to-point DC system. IEEE Trans. Ind. Electron. 2017, 65, 4080–4091. [Google Scholar] [CrossRef]
- Pang, B.; Tang, G.; Tian, T. Rolling bearing fault diagnosis based on SVDP-based kurtogram and Iterative autocorrelation of Teager energy operator. IEEE Access 2019, 7, 77222–77237. [Google Scholar] [CrossRef]
- He, M.; He, D. Deep learning based approach for bearing fault diagnosis. IEEE Trans. Ind. Appl. 2017, 53, 3057–3065. [Google Scholar] [CrossRef]
- Kommuri, S.K.; Lee, S.B.; Veluvolu, K.C. Robust sensors-fault-tolerance with sliding mode estimation and control for PMSM drives. IEEE/ASME Trans. Mechatron. 2017, 23, 17–28. [Google Scholar] [CrossRef]
- Andersson, A.; Thiringer, T. Motion sensorless IPMSM control using linear moving horizon estimation with Luenberger observer state feedback. IEEE Trans. Transp. 2018, 4, 464–473. [Google Scholar] [CrossRef]
- Mazzoletti, M.A.; Bossio, G.R.; De Angelo, C.H.; Espinoza-Trejo, D.R. A model-based strategy for interturn short-circuit fault diagnosis in PMSM. IEEE Trans. Ind. Electron. 2017, 64, 7218–7228. [Google Scholar] [CrossRef]
- Gou, L.; Shen, Y.; Zheng, H.; Zeng, X. Multi-fault diagnosis of an aero-engine control system using joint sliding mode observers. IEEE Access 2020, 8, 10186–10197. [Google Scholar] [CrossRef]
- Rigatos, G.; Abbaszadeh, M. Fault Diagnosis for a PDE Suspended-Bridge Model With Kalman Filter and Statistical Decision Making. IEEE Syst. J. 2020, 15, 2137–2147. [Google Scholar] [CrossRef]
- Zou, S.; Zhao, W.; Liang, W.; Wang, C.; Chen, F. Fault Diagnosis and Fault-Tolerant Compensation Strategy for Wheel Angle Sensor of Steer-by-Wire Vehicle via Extended Kalman Filter. IEEE Sens. J. 2021, 22, 1756–1766. [Google Scholar] [CrossRef]
- Choi, K.; Kim, Y.; Kim, S.K.; Kim, K.S. Current and position sensor fault diagnosis algorithm for PMSM drives based on robust state observer. IEEE Trans. Ind. Electron. 2020, 68, 5227–5236. [Google Scholar] [CrossRef]
- Salehifar, M.; Salehi Arashloo, R.; Moreno-Eguilaz, M.; Sala, V.; Romeral, L. Observer-based open transistor fault diagnosis and fault-tolerant control of five-phase permanent magnet motor drive for application in electric vehicles. IET Power Electron. 2015, 8, 76–87. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, D.; Liu, S.; Li, Y. Fault detection for linear discrete time-varying systems with multiplicative noise based on parity space method. ISA Trans. 2022, 121, 156–170. [Google Scholar] [CrossRef] [PubMed]
- Allal, A.; Khechekhouche, A. Diagnosis of induction motor faults using the motor current normalized residual harmonic analysis method. Int. J. Electr. Power Energy Syst. 2022, 141, 108219. [Google Scholar] [CrossRef]
- Konar, P.; Chattopadhyay, P. Multi-class fault diagnosis of induction motor using Hilbert and Wavelet Transform. Appl. Soft Comput. 2015, 30, 341–352. [Google Scholar] [CrossRef]
- Capolino, G.A.; Antonino-Daviu, J.A.; Riera-Guasp, M. Modern diagnostics techniques for electrical machines, power electronics, and drives. IEEE Trans. Ind. Electron. 2015, 62, 1738–1745. [Google Scholar] [CrossRef]
- Wu, H.; Feng, J. A Review of Fault Diagnosis Methods of Robot Joint Servo System. In Proceedings of the 2020 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, 13–16 October 2020; pp. 61–66. [Google Scholar]
- Ismail, A.; Saidi, L.; Sayadi, M. Wind turbine power converter fault diagnosis using DC-link voltage time–frequency analysis. Wind Eng. 2019, 43, 329–343. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Zhang, Y.; Zhang, J. Diagnosis of inter-turn short circuit of permanent magnet synchronous motor based on deep learning and small fault samples. Neurocomputing 2021, 442, 348–358. [Google Scholar] [CrossRef]
- Jlassi, I.; Cardoso, A.J.M. A single method for multiple IGBT, current, and speed sensor faults diagnosis in regenerative PMSM drives. IEEE Trans. Emerg. Sel. Top. Power Electron. 2019, 8, 2583–2599. [Google Scholar] [CrossRef]
- Li, M.; Lee, K.M.; Hanson, E. Sensor Fusion Based on Embedded Measurements for Real-Time Three-DOF Orientation Motion Estimation of a Weight-Compensated Spherical Motor. IEEE Trans. Instrum. Meas. 2022, 71, 9508009. [Google Scholar] [CrossRef]
- Zhu, M.; Hu, W.; Kar, N.C. Multi-sensor fusion-based permanent magnet demagnetization detection in permanent magnet synchronous machines. IEEE Trans. Mag. 2018, 54, 8110106. [Google Scholar] [CrossRef]
- Tran, C.D.; Palacky, P.; Kuchar, M.; Brandstetter, P.; Dinh, B.H. Current and speed sensor fault diagnosis method applied to induction motor drive. IEEE Access 2021, 9, 38660–38672. [Google Scholar] [CrossRef]
- Yu, M.; Wang, D. Model-based health monitoring for a vehicle steering system with multiple faults of unknown types. IEEE Trans. Ind. Electron. 2013, 61, 3574–3586. [Google Scholar]
- Niu, Y.; Gao, M.; Sheng, L. Fault-tolerant state estimation for stochastic systems over sensor networks with intermittent sensor faults. Appl. Math. Comput. 2022, 416, 126723. [Google Scholar] [CrossRef]
- Goh, T.Y.; Basah, S.N.; Yazid, H.; Safar, M.J.A.; Saad, F.S.A. Performance analysis of image thresholding: Otsu technique. Measurement 2018, 114, 298–307. [Google Scholar] [CrossRef]
- Kommuri, S.K.; Defoort, M.; Karimi, H.R.; Veluvolu, K.C. A robust observer-based sensor fault-tolerant control for PMSM in electric vehicles. IEEE Trans. Ind. Electron. 2016, 63, 7671–7681. [Google Scholar] [CrossRef]
- Xu, D.; Ding, B.; Jiang, B.; Yang, W.; Shi, P. Nonsingular fast terminal sliding mode control for permanent magnet linear synchronous motor via high-order super-twisting observer. IEEE/ASME Trans. Mechatron. 2021, 27, 1651–1659. [Google Scholar] [CrossRef]
- Bernard, P.; Andrieu, V. Luenberger observers for nonautonomous nonlinear systems. IEEE Trans. Autom. Control 2018, 64, 270–281. [Google Scholar] [CrossRef]
Quantity | Symbol | Value |
---|---|---|
PMSM Rating | 50 (kW) | |
Rating speed | 628 (rad/s) | |
Stator inductance | L | 0.47 (mH) |
Stator resistance | R | 0.79 () |
Magnetic flux linkage | 0.2709 (Vs/rad) | |
Number of poles | P | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narzary, D.; Veluvolu, K.C. Multiple Sensor Fault Detection Using Index-Based Method. Sensors 2022, 22, 7988. https://doi.org/10.3390/s22207988
Narzary D, Veluvolu KC. Multiple Sensor Fault Detection Using Index-Based Method. Sensors. 2022; 22(20):7988. https://doi.org/10.3390/s22207988
Chicago/Turabian StyleNarzary, Daijiry, and Kalyana Chakravarthy Veluvolu. 2022. "Multiple Sensor Fault Detection Using Index-Based Method" Sensors 22, no. 20: 7988. https://doi.org/10.3390/s22207988
APA StyleNarzary, D., & Veluvolu, K. C. (2022). Multiple Sensor Fault Detection Using Index-Based Method. Sensors, 22(20), 7988. https://doi.org/10.3390/s22207988