Stateful Rotor for Continuity of Quaternion and Fast Sensor Fusion Algorithm Using 9-Axis Sensors
Abstract
:1. Introduction
2. Methods
2.1. Definition of Quaternion Rotor
2.2. Stateful Rotor
2.3. Sensor Fusion Algorithm for the Stateful Rotor
2.3.1. Low-Frequency Side: Magnetometer and Accelerometer
2.3.2. High-Frequency Side: Gyro Sensor
2.3.3. Sensor Fusion with Complementary Filter
2.4. Fast Angle Estimation from Rotor
3. Results
3.1. Effects of Stateful Rotor
3.2. Sensor Fusion of Rotor with Complementary Filter
4. Discussion
4.1. Usefulness of Conversion to Statefulness
4.2. Calculation Cost
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krzysztof, K.; Świetlicka, A.; Majchrzycki, M.; Gugała, K.; Karoń, I.; Rybarczyk, A. Nine-Axis IMU Sensor Fusion Using the AHRS Algorithm and Neural Networks; University of West Bohemia: Plzen, Czech Republic, 2013. [Google Scholar]
- Wondosen, A.; Jeong, J.S.; Kim, S.K.; Debele, Y.; Kang, B.S. Improved Attitude and Heading Accuracy with Double Quaternion Parameters Estimation and Magnetic Disturbance Rejection. Sensors 2021, 21, 5475. [Google Scholar] [CrossRef] [PubMed]
- Renaudin, V.; Combettes, C. Magnetic, Acceleration Fields and Gyroscope Quaternion (MAGYQ)-Based Attitude Estimation with Smartphone Sensors for Indoor Pedestrian Navigation. Sensors 2014, 14, 22864–22890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alaimo, A.; Artale, V.; Milazzo, C.; Ricciardello, A. Comparison between Euler and quaternion parametrization in UAV dynamics. AIP Conf. Proc. 2013, 1558, 1228–1231. [Google Scholar] [CrossRef]
- Carino Escobar, J.; Abaunza Gonzalez, H.; Castillo Garcia, P. Quadrotor Quaternion Control. In Proceedings of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS), Denver, CO, USA, 9–12 June 2015. [Google Scholar] [CrossRef]
- Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef] [Green Version]
- Kusaka, T.; Tanaka, T.; Kajiwara, H. Residual correction method for fast calculation of arctangent in embedded systems. In Proceedings of the 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Busan, Korea, 7–11 July 2015; pp. 42–47. [Google Scholar] [CrossRef]
- Kusaka, T.; Tanaka, T. Fast and Accurate Approximation Methods for Trigonometric and Arctangent Calculations for Low-Performance Computers. Electronics 2022, 11, 2285. [Google Scholar] [CrossRef]
- Tsuchiya, Y.; Imamura, Y.; Tanaka, T.; Kusaka, T. Estimating Lumbar Load During Motion with an Unknown External Load Based on Back Muscle Activity Measured with a Muscle Stiffness Sensor. J. Robot. Mechatron. 2018, 30, 696–705. [Google Scholar] [CrossRef]
- Kusaka, T.; Tanaka, T.; Kaneko, S.; Suzuki, Y.; Saito, M.; Kajiwara, H. Assist Force Control of Smart Suit for Horse Trainers Considering Motion Synchronization. Int. J. Autom. Technol. 2009, 3, 723–730. [Google Scholar] [CrossRef]
- Yoshida, M.; Tanaka, T.; Tsuchiya, Y.; Kusaka, T. Reducing Lumbar Load with Active Corset. J. Robot. Mechatron. 2018, 30, 740–751. [Google Scholar] [CrossRef]
- Bortz, J.E. A New Mathematical Formulation for Strapdown Inertial Navigation. IEEE Trans. Aerosp. Electron. Syst. 1971, AES-7, 61–66. [Google Scholar] [CrossRef]
- Caron, F.; Duflos, E.; Pomorski, D.; Vanheeghe, P. GPS/IMU data fusion using multisensor Kalman filtering: Introduction of contextual aspects. Inf. Fusion 2006, 7, 221–230. [Google Scholar] [CrossRef]
- Lefferts, E.; Markley, F.; Shuster, M. Kalman Filtering for Spacecraft Attitude Estimation. J. Guid. Control Dyn. 1982, 5, 417–429. [Google Scholar] [CrossRef]
- Sabatini, A. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing. IEEE Trans. Biomed. Eng. 2006, 53, 1346–1356. [Google Scholar] [CrossRef]
- Sabatini, A.M. Kalman-filter-based orientation determination using inertial/magnetic sensors: Observability analysis and performance evaluation. Sensors 2011, 11, 9182–9206. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z.; Sun, P. Quaternion-Based Kalman Filter for AHRS Using an Adaptive-Step Gradient Descent Algorithm. Int. J. Adv. Robot. Syst. 2015, 12, 131. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, Z.; Fourati, H.; Liu, M. Recursive Linear Continuous Quaternion Attitude Estimator From Vector Observations. IET Radar Sonar Navig. 2018, 12, 1196–1207. [Google Scholar] [CrossRef]
- Mahony, R.; Trumpf, J. Equivariant Filter Design for Kinematic Systems on Lie Groups. IFAC-PapersOnLine 2021, 54, 253–260. [Google Scholar] [CrossRef]
- Madgwick, S. An efficient orientation filter for inertial and inertial/magnetic sensor arrays. Rep. X-Io Univ. Bristol (UK) 2010, 25, 113–118. [Google Scholar]
- Santos, S.; Folgado, D.; Rodrigues, J.; Mollaei, N.; Fujão, C.; Gamboa, H. Exploring Inertial Sensor Fusion Methods for Direct Ergonomic Assessments. In Biomedical Engineering Systems and Technologies, Proceedings of the 13th International Joint Conference, BIOSTEC 2020, Valletta, Malta, 24–26 February 2020; Ye, X., Soares, F., De Maria, E., Gómez Vilda, P., Cabitza, F., Fred, A., Gamboa, H., Eds.; Communications in Computer and Information Science; Springer International Publishing: Cham, Switzerland, 2021; pp. 289–303. [Google Scholar] [CrossRef]
- Briales, E.; Urda, P.; Escalona, J.L. Track frame approach for heading and attitude estimation in operating railways using on-board MEMS sensor and encoder. Measurement 2021, 184, 109898. [Google Scholar] [CrossRef]
- Kim, S.U.; Lee, J.; Yoon, J.; Ko, S.K.; Kim, J. Robust methods for estimating the orientation and position of IMU and MARG sensors. Electron. Lett. 2021, 57, 816–818. [Google Scholar] [CrossRef]
- Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a gradient descent algorithm. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–7. [Google Scholar] [CrossRef]
- Al-Fahoum, A.; Abadir, M. Design of a Modified Madgwick Filter for Quaternion-Based Orientation Estimation Using AHRS. Int. J. Comput. Electr. Eng. 2018, 10, 174–186. [Google Scholar] [CrossRef] [Green Version]
- Mahony, R.; Hamel, T.; Pflimlin, J.M. Nonlinear Complementary Filters on the Special Orthogonal Group. IEEE Trans. Autom. Control 2008, 53, 1203–1218. [Google Scholar] [CrossRef] [Green Version]
- Del Rosario, M.; Lovell, N. Quaternion-Based Complementary Filter for Attitude Determination of a Smartphone. IEEE Sens. J. 2016, 16, 6008–6017. [Google Scholar] [CrossRef]
- Shoemake, K. Quaternions. 1994. Available online: https://web.archive.org/web/20200503045740/http://www.cs.ucr.edu/~vbz/resources/quatut.pdf (accessed on 11 September 2022).
- Dam, E.B.; Koch, M.; Lillholm, M. Quaternions, Interpolation and Animation; Technical Report; Datalogisk Institut, Kobenhavns Universitet: Copenhagen, Denmark, 1998. [Google Scholar]
- Vicci, L. Quaternions and Rotations in 3-Space: The Algebra and Its Geometric Interpretation; Technical Report; UNC: Chapel Hill, NC, USA, 2001. [Google Scholar]
- Black, H.D. A passive system for determining the attitude of a satellite. AIAA J. 1964, 2, 1350–1351. [Google Scholar] [CrossRef]
- Shuster, M.D.; Oh, S.D. Three-axis attitude determination from vector observations. J. Guid. Control 1981, 4, 70–77. [Google Scholar] [CrossRef]
- Moroz, L.V.; Samotyy, V.V.; Horyachyy, O.Y. Modified Fast Inverse Square Root and Square Root Approximation Algorithms: The Method of Switching Magic Constants. Computation 2021, 9, 21. [Google Scholar] [CrossRef]
- Walczyk, C.J.; Moroz, L.V.; Cieśliński, J.L. Improving the Accuracy of the Fast Inverse Square Root by Modifying Newton–Raphson Corrections. Entropy 2021, 23, 86. [Google Scholar] [CrossRef]
- Eberly, D.H. GPGPU Programming for Games and Science; A K Peters/CRC Press: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- id-Software/Quake-III-Arena. 2022. Available online: https://github.com/id-Software/Quake-III-Arena/blob/master/code/game/q_math.c (accessed on 31 January 2012).
- Warren, H.S. Hacker’s Delight, 2nd ed.; Pearson Education: London, UK, 2013. [Google Scholar]
- Hasnat, A.; Bhattacharyya, T.; Dey, A.; Halder, S.; Bhattacharjee, D. A fast FPGA based architecture for computation of square root and Inverse Square Root. In Proceedings of the 2017 Devices for Integrated Circuit (DevIC), Kalyani, India, 23–24 March 2017; pp. 383–387. [Google Scholar] [CrossRef]
- Calusdian, J.; Yun, X.; Bachmann, E. Adaptive-gain complementary filter of inertial and magnetic data for orientation estimation. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 1916–1922. [Google Scholar] [CrossRef] [Green Version]
- Valenti, R.G.; Dryanovski, I.; Xiao, J. Keeping a Good Attitude: A Quaternion-Based Orientation Filter for IMUs and MARGs. Sensors 2015, 15, 19302–19330. [Google Scholar] [CrossRef] [Green Version]
- Yi, C.; Ma, J.; Guo, H.; Han, J.; Gao, H.; Jiang, F.; Yang, C. Estimating Three-Dimensional Body Orientation Based on an Improved Complementary Filter for Human Motion Tracking. Sensors 2018, 18, 3765. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zhou, Z.; Fourati, H.; Cheng, Y. A Super Fast Attitude Determination Algorithm for Consumer-Level Accelerometer and Magnetometer. IEEE Trans. Consum. Electron. 2018, 64, 375–381. [Google Scholar] [CrossRef]
- Phuong, N.H.Q.; Kang, H.J.; Suh, Y.S.; Ro, Y.S. A DCM Based Orientation Estimation Algorithm with an Inertial Measurement Unit and a Magnetic Compass. J. Univers. Comput. Sci. 2009, 15, 859–876. [Google Scholar]
- Won, S.h.; Parnian, N.; Golnaraghi, F.; Melek, W. A quaternion-based tilt angle correction method for a hand-held device using an inertial measurement unit. In Proceedings of the 2008 34th Annual Conference of IEEE Industrial Electronics, Orlando, FL, USA, 10–13 November 2008; pp. 2971–2975. [Google Scholar] [CrossRef]
- Pongsak, L.; Okada, M.; Sinohara, T. Attitude Estimation by Compensating Gravity Direction. In Proceedings of the 21th Annual Conference of the Robotics Society in Japan, Tokyo, Japan, 20–22 September 2003. [Google Scholar]
- Cruz, S. IMU Data Processing to Recognize Activities of Daily Living with a Smart Headset. Master’s Thesis, University of California, Santa Cruz, CA, USA, 2018; 115p. [Google Scholar]
- Wrona, M. Designing a Quaternion-Based EKF for Accelerometer, Gyroscope, & Magnetometer Fusion. Section: Posts. 2020. Available online: https://mwrona.com/posts/attitude-ekf/ (accessed on 31 July 2022).
- Narayan, A. How to Integrate Quaternions. 2017. Available online: https://www.ashwinnarayan.com/post/how-to-integrate-quaternions/ (accessed on 31 July 2022).
- Cavaliere, A.D. Calculating Tait Bryan Angles by Acceleration and Gyroscope Sensors Signal Fusion. 2016. Available online: https://www.monocilindro.com/2016/06/04/how-to-calculate-tait-bryan-angles-acceleration-and-gyroscope-sensors-signal-fusion/ (accessed on 31 July 2022).
- Yadav, N.; Bleakley, C. Accurate Orientation Estimation Using AHRS under Conditions of Magnetic Distortion. Sensors 2014, 14, 20008–20024. [Google Scholar] [CrossRef] [PubMed]
- Phillip. Phillip’s Technology Corner: Fast Quaternion Integration for Attitude Estimation. 2014. Available online: http://philstech.blogspot.com/2014/09/fast-quaternion-integration-for.html (accessed on 31 July 2022).
- Wetzstein, G. Inertial Measurement Units II. Available online: https://stanford.edu/class/ee267/lectures/lecture10.pdf (accessed on 31 July 2022).
+ | × | / | √ | ||
---|---|---|---|---|---|
DCM-based without fast inverse square root | 13 | 5 | 1 | 1 | 0 |
DCM-based with fast inverse square root | 15 | 9 | 0 | 0 | 0 |
SAAM | 18 | 16 | 1 | 2 | 0 |
FQA | 18 | 53 | 4 | 3 | 6 |
+ | × | / | ||
---|---|---|---|---|
Fast quaternion integration | 3 | 7 | 0 | 0 |
Complementary filter | 24 | 16 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusaka, T.; Tanaka, T. Stateful Rotor for Continuity of Quaternion and Fast Sensor Fusion Algorithm Using 9-Axis Sensors. Sensors 2022, 22, 7989. https://doi.org/10.3390/s22207989
Kusaka T, Tanaka T. Stateful Rotor for Continuity of Quaternion and Fast Sensor Fusion Algorithm Using 9-Axis Sensors. Sensors. 2022; 22(20):7989. https://doi.org/10.3390/s22207989
Chicago/Turabian StyleKusaka, Takashi, and Takayuki Tanaka. 2022. "Stateful Rotor for Continuity of Quaternion and Fast Sensor Fusion Algorithm Using 9-Axis Sensors" Sensors 22, no. 20: 7989. https://doi.org/10.3390/s22207989
APA StyleKusaka, T., & Tanaka, T. (2022). Stateful Rotor for Continuity of Quaternion and Fast Sensor Fusion Algorithm Using 9-Axis Sensors. Sensors, 22(20), 7989. https://doi.org/10.3390/s22207989